Moss Chloroplasts Are Surrounded by a Peptidoglycan Wall Containing D-Amino Acids.
نویسندگان
چکیده
It is believed that the plastids in green plants lost peptidoglycan (i.e., a bacterial cell wall-containing d-amino acids) during their evolution from an endosymbiotic cyanobacterium. Although wall-like structures could not be detected in the plastids of green plants, the moss Physcomitrella patens has the genes required to generate peptidoglycan (Mur genes), and knocking out these genes causes defects in chloroplast division. Here, we generated P patens knockout lines (∆Pp-ddl) for a homolog of the bacterial peptidoglycan-synthetic gene encoding d-Ala:d-Ala ligase. ∆Pp-ddl had a macrochloroplast phenotype, similar to other Mur knockout lines. The addition of d-Ala-d-Ala (DA-DA) to the medium suppressed the appearance of giant chloroplasts in ∆Pp-ddl, but the addition of l-Ala-l-Ala (LA-LA), DA-LA, LA-DA, or d-Ala did not. Recently, a metabolic method for labeling bacterial peptidoglycan was established using ethynyl-DA-DA (EDA-DA) and click chemistry to attach an azide-modified fluorophore to the ethynyl group. The ∆Pp-ddl line complemented with EDA-DA showed that moss chloroplasts are completely surrounded by peptidoglycan. Our findings strongly suggest that the moss plastids have a peptidoglycan wall containing d-amino acids. By contrast, no plastid phenotypes were observed in the T-DNA tagged ddl mutant lines of Arabidopsis thaliana.
منابع مشابه
Both the transglycosylase and transpeptidase functions in plastid penicillin-binding protein are essential for plastid division in Physcomitrella patens
Class A penicillin-binding proteins (PBPs) are active in the final step of bacterial peptidoglycan biosynthesis. They possess a transglycosylase (TG) domain to polymerize the glycan chains and a transpeptidase (TP) domain to catalyze peptide cross-linking. We reported that knockout of the Pbp gene in the moss Physcomitrella patens (ΔPpPbp) results in a macrochloroplast phenotype by affecting pl...
متن کاملExpression of the Staphylococcus aureus UDP-N-acetylmuramoyl- L-alanyl-D-glutamate:L-lysine ligase in Escherichia coli and effects on peptidoglycan biosynthesis and cell growth.
The monomer units in the Escherichia coli and Staphylococcus aureus cell wall peptidoglycans differ in the nature of the third amino acid in the L-alanyl-gamma-D-glutamyl-X-D-alanyl-D-alanine side chain, where X is meso-diaminopimelic acid or L-lysine, respectively. The murE gene from S. aureus encoding the UDP-N-acetylmuramoyl-L-alanyl-D-glutamate: L-lysine ligase was identified and cloned int...
متن کاملReconstitution of Peptidoglycan Cross-Linking Leads to Improved Fluorescent Probes of Cell Wall Synthesis
The peptidoglycan precursor, Lipid II, produced in the model Gram-positive bacterium Bacillus subtilis differs from Lipid II found in Gram-negative bacteria such as Escherichia coli by a single amidation on the peptide side chain. How this difference affects the cross-linking activity of penicillin-binding proteins (PBPs) that assemble peptidoglycan in cells has not been investigated because B....
متن کاملPeptidoglycan plasticity in bacteria: stress-induced peptidoglycan editing by noncanonical D-amino acids.
It has been generally assumed that the role of D-amino acids in bacterial physiology is rather limited. However, recent new evidence demonstrated that millimolar concentrations of noncanonical D-amino acids are synthesized and released to the environment by bacteria from diverse phyla. These D-amino acids help bacteria adapt to environmental challenges by modulating the structure and compositio...
متن کاملFull color palette of fluorescent d-amino acids for in situ labeling of bacterial cell walls.
Fluorescent d-amino acids (FDAAs) enable efficient in situ labeling of peptidoglycan in diverse bacterial species. Conducted by enzymes involved in peptidoglycan biosynthesis, FDAA labeling allows specific probing of cell wall formation/remodeling activity, bacterial growth and cell morphology. Their broad application and high biocompatibility have made FDAAs an important and effective tool for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 28 7 شماره
صفحات -
تاریخ انتشار 2016