Limit Theory for Point Processes in Manifolds By
نویسندگان
چکیده
Let Yi, i ≥ 1, be i.i.d. random variables having values in an mdimensional manifold M ⊂ Rd and consider sums ∑ni=1 ξ(nYi, {n1/mYj }j=1), where ξ is a real valued function defined on pairs (y,Y), with y ∈Rd and Y ⊂Rd locally finite. Subject to ξ satisfying a weak spatial dependence and continuity condition, we show that such sums satisfy weak laws of large numbers, variance asymptotics and central limit theorems. We show that the limit behavior is controlled by the value of ξ on homogeneous Poisson point processes on m-dimensional hyperplanes tangent to M. We apply the general results to establish the limit theory of dimension and volume content estimators, Rényi and Shannon entropy estimators and clique counts in the Vietoris–Rips complex on {Yi}i=1.
منابع مشابه
Evaluation of the Centre Manifold Method for Limit Cycle Calculations of a Nonlinear Structural Wing
In this study the centre manifold is applied for reduction and limit cycle calculation of a highly nonlinear structural aeroelastic wing. The limit cycle is arisen from structural nonlinearity due to the large deflection of the wing. Results obtained by different orders of centre manifolds are compared with those obtained by time marching method (fourth-order Runge-Kutta method). These comparis...
متن کاملLimit theory for point processes in manifolds
Let Yi, i ≥ 1, be i.i.d. random variables having values in an m-dimensional manifold M ⊂ Rd and consider sums ni=1 ξ(nYi, {nYi}i=1), where ξ is a real valued function defined on pairs (y,Y), with y ∈ Rd and Y ⊂ Rd locally finite. Subject to ξ satisfying a weak spatial dependence and continuity condition, we show that such sums satisfy weak laws of large numbers, variance asymptotics, and centra...
متن کاملMultiple point of self-transverse immesions of certain manifolds
In this paper we will determine the multiple point manifolds of certain self-transverse immersions in Euclidean spaces. Following the triple points, these immersions have a double point self-intersection set which is the image of an immersion of a smooth 5-dimensional manifold, cobordant to Dold manifold $V^5$ or a boundary. We will show there is an immersion of $S^7times P^2$ in $mathbb{R}^{1...
متن کاملInfinitely many solutions for a bi-nonlocal equation with sign-changing weight functions
In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.
متن کاملNormal forms of Hopf Singularities: Focus Values Along with some Applications in Physics
This paper aims to introduce the original ideas of normal form theory and bifurcation analysis and control of small amplitude limit cycles in a non-technical terms so that it would be comprehensible to wide ranges of Persian speaking engineers and physicists. The history of normal form goes back to more than one hundreds ago, that is to the original ideas coming from Henry Poincare. This tool p...
متن کامل