An Active-Set Quadratic Programming Method Based On Sequential Hot-Starts
نویسندگان
چکیده
A new method for solving sequences of quadratic programs (QPs) is presented. For each new QP in the sequence, the method utilizes hot-starts that employ information computed by an active-set QP solver during the solution of the first QP. This avoids the computation and factorization of the full matrices for all but the first problem in the sequence. The proposed algorithm can be seen as an extension of the iterative refinement procedure for linear systems to QP problems, coupled with the application of an accelerated linear solver method that employs hot-started QP solves as preconditioners. Local convergence results are presented. The practical performance of the proposed method is demonstrated on a sequence of QPs arising in nonlinear model predictive control and during the solution of a set of randomly generated nonlinear optimization problems using sequential quadratic programming. The results show a significant reduction in the computation time for large problems with dense constraint matrices, as well as in the number of matrix-vector products.
منابع مشابه
An Active-Set Method for Quadratic Programming Based On Sequential Hot-Starts
A new method for solving sequences of quadratic programs (QPs) is presented. For each new QP in the sequence, the method utilizes hot-starts that employ information computed by an active-set QP solver during the solution of the first QP. This avoids the computation and factorization of the full constraint and Hessian matrices for all but the first problem in the sequence. The proposed algorithm...
متن کاملSolving A Fractional Program with Second Order Cone Constraint
We consider a fractional program with both linear and quadratic equation in numerator and denominator having second order cone (SOC) constraints. With a suitable change of variable, we transform the problem into a second order cone programming (SOCP) problem. For the quadratic fractional case, using a relaxation, the problem is reduced to a semi-definite optimization (SDO) program. The p...
متن کاملA parametric active set method for quadratic programs with vanishing constraints
Combinatorial and logic constraints arising in a number of challenging optimization applications can be formulated as vanishing constraints. Quadratic programs with vanishing constraints (QPVCs) then arise as subproblems during the numerical solution of such problems using algorithms of the Sequential Quadratic Programming type. QPVCs are nonconvex problems violating standard constraint qualifi...
متن کاملInterior Point Method based Sequential Quadratic Programming Algorithm with Quadaratic Search for Nonlinear Optimization
The field of constrained nonlinear programming (NLP) has been principally challenging to various gradient based optimization techniques. The Sequential quadratic programming algorithm (SQP) that uses active set strategy in solving quadratic programming (QP) subproblems proves to be efficient in locating the points of local optima. However, its efficient determination of the optimal active set h...
متن کاملA TRUST-REGION SEQUENTIAL QUADRATIC PROGRAMMING WITH NEW SIMPLE FILTER AS AN EFFICIENT AND ROBUST FIRST-ORDER RELIABILITY METHOD
The real-world applications addressing the nonlinear functions of multiple variables could be implicitly assessed through structural reliability analysis. This study establishes an efficient algorithm for resolving highly nonlinear structural reliability problems. To this end, first a numerical nonlinear optimization algorithm with a new simple filter is defined to locate and estimate the most ...
متن کامل