Low-energy Resistive Random Access Memory Devices with No Need for a Compliance Current

نویسندگان

  • Zedong Xu
  • Lina Yu
  • Yong Wu
  • Chang Dong
  • Ning Deng
  • Xiaoguang Xu
  • J. Miao
  • Yong Jiang
چکیده

A novel resistive random access memory device is designed with SrTiO3/ La2/3Sr1/3MnO3 (LSMO)/MgAl2O4 (MAO)/Cu structure, in which metallic epitaxial LSMO is employed as the bottom electrode rather than traditional metal materials. In this device, the critical external compliance current is no longer necessary due to the high self-resistance of LSMO. The LMSO bottom electrode can act as a series resistor to offer a compliance current during the set process. Besides, the device also has excellent switching features which are originated in the formation of Cu filaments under external voltage. Therefore it provides the possibility of reducing power consumption and accelerating the commercialization of resistive switching devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resistive switching in Ga- and Sb-doped ZnO single nanowire devices

Resistive random access memory (RRAM) is one of the most promising nonvolatile memory technologies because of its high potential to replace traditional charge-based memory, which is approaching its scaling limit. To fully realize the potential of the RRAM, it can be important to develop a unique device with current self-rectification, which provides a solution to suppress sneak current in cross...

متن کامل

Non-Volatile Memory: Emerging Technologies And Their Impacts on Memory Systems

For almost 30 years, computer memory systems have been essentially the same: volatile, high speed memory technologies like SRAM and DRAM used for cache and main memory; magnetic disks for high-end data storage; and persistent, low speed ash memory for storage with low capacity/low energy consumption requirements such as embedded/mobile devices. Today we watch the emergence of new non-volatile m...

متن کامل

Self-compliance-improved resistive switching using Ir/TaOx/W cross-point memory

Resistive switching properties of a self-compliance resistive random access memory device in cross-point architecture with a simple stack structure of Ir/TaOx/W have been investigated. A transmission electron microscope and atomic force microscope were used to observe the film properties and morphology of the stack. The device has shown excellent switching cycle uniformity with a small operatio...

متن کامل

RRAM characteristics using a new Cr/GdOx/TiN structure

Resistive random access memory (RRAM) characteristics using a new Cr/GdOx/TiN structure with different device sizes ranging from 0.4 × 0.4 to 8 × 8 μm(2) have been reported in this study. Polycrystalline GdOx film with a thickness of 17 nm and a small via-hole size of 0.4 μm are observed by a transmission electron microscope (TEM) image. All elements and GdOx film are confirmed by energy disper...

متن کامل

Analog and Digital Switching Characteristics of Transition Metal Oxide Based Resistive Random Access Memory (ReRAM) Devices

Transition Metal Oxide (TMO) Based Resistive Random Access Memory (ReRAM) devices have gathered significant research attention for non-volatile data storage applications. The major advantages lie in terms of scalability, low switching voltages, and process compatibility with the CMOS technologies [1, 2]. However, to take the complete benefit of this enabling technology there are several challen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015