Cytotoxicity of PEGylated graphene oxide on lymphoma cells.
نویسندگان
چکیده
Graphene oxide (GO) is a hotspot, especially in the field of biomedical. However, the clinical application of GO is still faces a lot of challenges. In order to improve the solubility and biocompatibility of GO, polyethylene glycol (PEG) was grafted on the surface of graphene oxide by amide reaction. PEGylated graphene oxide (PEG-GO) was characterized using Fourier transform infrared spectroscopy (FTIR). The stability of PEG-GO detected in different solutions. Raji cell was selected as a lymphoma cell model to study the cytotoxicity of PEG-GO. Cell viability was detected using the Cell Counting Kit-8 assay. Cells were treated with different concentrations (10-100 μg/mL) of PEG-GO at different time points (6, 12, and 24 h). The FTIR spectrum of PEG-GO indicated that polyethylene glycol was successfully grafted onto GO. PEG-GO had excellent stability in all solutions. Cells treated with PEG-GO (10-100 μg/mL) for 24 hours had survival rates were over 80%. These results demonstrate that PEG-GO had an excellent dispersion in biological solutions and the toxicity of PEG-GO to lymphoma cells was low. The paper may provide cytological evidence for the application of PEG-GO in medicine.
منابع مشابه
Experimental study: Investigation of graphene oxide nanoparticles effect on increasing the thermal effect of ultrasound waves on water for thermal therapy of cancer cells
Background & Aim: Ultrasound hyperthermia with nanoparticles has been regarded as an effective method for localized death of cancerous cells with fewer side effects to the surrounding normal tissues. The aim of this study was to investigate the increasing of water temperature by ultrasound waves in the presence of graphene oxide (GO) nanoparticles in order to be used in thermal treatment of can...
متن کاملGraphene Oxide in Dentistry: A Review
Abstract BACKGROUNackground and AimD & AIM: In this study, a brief but accurate evaluation of the role of graphene oxide in dentistry and interaction with all soft and hard tissues, the study of studies conducted in vitro or in vivo and new approaches in the field of tissue engineering has been investigated Material & Methods: Reviewed articles using Medline, Google scholar, Scopus, Scien...
متن کاملVincristine loaded niosomes as an effective drug delivery system for lymphoma
Aim and Background: Vincristine is a herbal anticancer drug which is used to treat a wide range of cancers such as lymphoma. Niosomes are important drug carriers. The aim of this study was to prepare PEGylated niosomal form of vincristine in order to increase its efficacy in lymph nodes’ cancer. Material and Methods: PEGylated niosomal vincristine (PEG-nVCR) was prepared by thin film hydrat...
متن کاملAssociation of rituximab with graphene oxide confers direct cytotoxicity for CD20-positive lymphoma cells
Non-Hodgkin lymphoma (NHL) is one of the most common hematologic malignancies among adults for which the chimeric monoclonal anti-CD20 antibody (Ab) rituximab (RTX) is used as first-line therapy. As RTX itself is not directly cytotoxic but relies on host immune effector mechanisms or chemotherapeutic agents to attack target cells, its therapeutic capacity may become limited when host effector m...
متن کاملAnticancer activity of Doxorubicin conjugated to polymer/carbon based-nanohybrid against MCF-7 breast and HT-29 colon cancer cells
The Cancer is one of the world’s most devastating diseases. Doxorubicin (DOX) is an effective chemotherapeutic drug; however, its toxicity is a significant limitation in therapy. Due to the severe side effects of chemotherapy drugs, scientists have tried to load these drugs in nanocomposites. This paper describes a facile and low cost approach for preparation polymeric biodegradable nanohybrid ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bio-medical materials and engineering
دوره 24 6 شماره
صفحات -
تاریخ انتشار 2014