Autotrophic growth of H2-uptake-positive strains of Rhizobium japonicum in an atmosphere supplied with hydrogen gas.

نویسندگان

  • F J Hanus
  • R J Maier
  • H J Evans
چکیده

Previous research from this laboratory has demonstrated CO(2)-fixing and H(2)-uptake capacities of certain strains of Rhizobium japonicum. In this report we have shown that SR, a H(2)-uptake-positive (Hup(+)) strain of R. japonicum, is capable of autotrophic growth with H(2) as the energy source. Growth occurred on mineral salts/vitamins/Noble agar, mineral salts/vitamins liquid medium (0.27 mug of C as vitamins per ml), and in mineral salts liquid medium with no added vitamins when cultures were provided with NH(4)Cl and incubated in an atmosphere containing H(2), CO(2), O(2), and N(2). Little or no growth occurred when either H(2) or CO(2) was omitted from the atmosphere or when the culture was inoculated with SR3, a Hup(-) mutant of SR. Growth was measured by protein synthesis, fixed organic carbon, and increase in cell number in liquid cultures. The organism that grew autotrophically was verified as R. japonicum by (i) apparent purity on streak plates; (ii) retention of the double antibiotic resistance markers; and (iii) its capability to nodulate soybeans. H(2)- and CO(2)-supported growth was demonstrated for three additional Hup(+) wild-type R. japonicum strains (USDA 136, 3I1b 6, and 3I1b 143), while three Hup(-) wild-type strains (USDA 120, 3I1b 144, and USDA 117) were incapable of growth on the Noble agar medium containing mineral salts/vitamins in the H(2)/CO(2)/O(2)/N(2) atmosphere. This demonstrated capability of Hup(+)R. japonicum strains to grow autotrophically requires revision of current concepts regarding conditions for survival and competition of these bacteria in the soil and their relationships to other microorganisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemoautotrophic growth of hydrogen-uptake-positive strains of Rhizobium japonicum.

Recently reported research from this laboratory has demonstrated the autotrophic growth of certain hydrogen-uptake-positive strains of Rhizobium japonicum and defined minimal conditions for such growth. Ribulose 1,5-bisphosphate carboxylase has been detected in autotrophically growing cells, but at low specific activity. Moreover, growth rates were low, and growth ceased at low cell densities. ...

متن کامل

Intra- and interspecies transfer and expression of Rhizobium japonicum hydrogen uptake genes and autotrophic growth capability.

Cosmids containing hydrogen uptake genes have previously been isolated in this laboratory. Four new cosmids that contain additional hup gene(s) have now been identified by conjugal transfer of a Rhizobium japonicum 122DES gene bank into a Tn5-generated Hup(-) mutant and screening for the acquisition of Hup activity. The newly isolated cosmids, pHU50-pHU53, contain part of the previously isolate...

متن کامل

Reconstitution of H2 oxidation activity from H2 uptake-negative mutants of Rhizobium japonicum bacteroids.

An in vitro reconstitution of both methylene blue and oxygen-dependent H2 uptake activity from extracts of Hup- (H2 uptake-negative) mutant strains of Rhizobium japonicum bacteroids is described. Cell-free extracts prepared from bacteroids formed from two different Hup- mutants were mixed, and active H2 oxidizing particles formed. Extracts from each mutant alone did not oxidize H2. The source o...

متن کامل

Cloning and characterization of hydrogen uptake genes from Rhizobium leguminosarum.

A gene library of genomic DNA from the hydrogen uptake (Hup)-positive strain 128C53 of Rhizobium leguminosarum was constructed by using the broad-host-range mobilizable cosmid vector pLAFR1. The resulting recombinant cosmids contained insert DNA averaging 21 kilobase pairs (kb) in length. Two clones from the above gene library were identified by colony hybridization with DNA sequences from plas...

متن کامل

Hydrogen Oxidizing Bacteria as Poly(hydroxybutyrate) Producers

Batch culture of Ralstonia eutropha using the recycled gas closed circuit culture system was conducted in order to develop a practical fermentation system for industrial autotrophic culture for poly (hydroxybutrate) production. The gas phase of the culture system consisted of substrate gas so that gases in this culture could be recycled as long as the amount of the gas consumed would be repleni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 76 4  شماره 

صفحات  -

تاریخ انتشار 1979