A Broyden Rank p+1 Update Continuation Method with Subspace Iteration

نویسندگان

  • Tycho L. van Noorden
  • Sjoerd Verduyn Lunel
  • A. Bliek
چکیده

In this paper we present an efficient branch-following procedure that can be used not only to compute branches of periodic solutions of periodically forced dynamical systems but also to determine the stability of the periodic solutions. The procedure combines Broyden’s method with a subspace iteration method to determine the dominant eigenvalues. The method has connections with the hybrid Newton–Picard methods developed by Lust et al. in [SIAM J. Sci. Comput., 19 (1998) pp. 1188–1209]. A convergence analysis of the procedure is presented. The method is applied to the computation of periodic states of a reverse flow reactor, and its performance is compared with two variants of the hybrid Newton–Picard method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the connection between the conjugate gradient method and quasi-Newton methods on quadratic problems

It is well known that the conjugate gradient method and a quasi-Newton method, using any well-defined update matrix from the one-parameter Broyden family of updates, produce the same iterates on a quadratic problem with positive-definite Hessian. This equivalence does not hold for any quasi-Newton method. We discuss more precisely the conditions on the update matrix that give rise to this behav...

متن کامل

ABS-Type Methods for Solving $m$ Linear Equations in $frac{m}{k}$ Steps for $k=1,2,cdots,m$

‎The ABS methods‎, ‎introduced by Abaffy‎, ‎Broyden and Spedicato‎, ‎are‎‎direct iteration methods for solving a linear system where the‎‎$i$-th iteration satisfies the first $i$ equations‎, ‎therefore a‎ ‎system of $m$ equations is solved in at most $m$ steps‎. ‎In this‎‎paper‎, ‎we introduce a class of ABS-type methods for solving a full row‎‎rank linear equations‎, ‎w...

متن کامل

A note on extended reduced rank-two Abaffian update schemes in the ABS-type methods

The ABS methods, introduced by Abaffy, Broyden and Spedicato, are direct iteration methods for solving a linear system where the ith iterate satisfies the first i equations, therefore a system of m equations is solved in at most m steps. Recently, we have presented a new approach to devise a class of ABS-type methods for solving full row rank systems [K. Amini, N. Mahdavi-Amiri, M. R. Peyghami,...

متن کامل

On Solving Large-scale Limited-memory Quasi-newton Equations

We consider the problem of solving linear systems of equations with limited-memory members of the restricted Broyden class and symmetric rank-one matrices. In this paper, we present various methods for solving these linear systems, and propose a new approach based on a practical implementation of the compact representation for the inverse of these limited-memory matrices. Using the proposed app...

متن کامل

A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2004