Hepatic glycogen synthesis is highly sensitive to phosphorylase activity: evidence from metabolic control analysis.
نویسندگان
چکیده
We used metabolic control analysis to determine the flux control coefficient of phosphorylase on glycogen synthesis in hepatocytes by titration with a specific phosphorylase inhibitor (CP-91149) or by expression of muscle phosphorylase using recombinant adenovirus. The muscle isoform was used because it is catalytically active in the b-state. CP-91149 inactivated phosphorylase with sequential activation of glycogen synthase. It increased glycogen synthesis by 7-fold at 5 mm glucose and by 2-fold at 20 mm glucose with a decrease in the concentration of glucose causing half-maximal rate (S(0.5)) from 26 to 19 mm. Muscle phosphorylase was expressed in hepatocytes mainly in the b-state. Low levels of phosphorylase expression inhibited glycogen synthesis by 50%, with little further inhibition at higher enzyme expression, and caused inactivation of glycogen synthase that was reversed by CP-91149. At endogenous activity, phosphorylase has a very high (greater than unity) negative control coefficient on glycogen synthesis, regardless of whether it is determined by enzyme inactivation or overexpression. This high control is attenuated by glucokinase overexpression, indicating dependence on other enzymes with high control. The high control coefficient of phosphorylase on glycogen synthesis affirms that phosphorylase is a strong candidate target for controlling hyperglycemia in type 2 diabetes in both the absorptive and postabsorptive states.
منابع مشابه
Stimulating effects of low-dose fructose on insulin-stimulated hepatic glycogen synthesis in humans.
Fructose has been shown to have a catalytic effect on glucokinase activity in vitro; however, its effects on hepatic glycogen metabolism in humans is unknown. To address this question, we used (13)C nuclear magnetic resonance (NMR) spectroscopy to noninvasively assess rates of hepatic glycogen synthesis and glycogenolysis under euglycemic (approximately 5 mmol/l) hyperinsulinemic conditions (ap...
متن کاملIncreased sensitivity of glycogen synthesis to phosphorylase-a and impaired expression of the glycogen-targeting protein R6 in hepatocytes from insulin-resistant Zucker fa/fa rats.
Hepatic insulin resistance in the leptin-receptor defective Zucker fa/fa rat is associated with impaired glycogen synthesis and increased activity of phosphorylase-a. We investigated the coupling between phosphorylase-a and glycogen synthesis in hepatocytes from fa/fa rats by modulating the concentration of phosphorylase-a. Treatment of hepatocytes from fa/fa rats and Fa/? controls with a selec...
متن کاملHuman skeletal muscle expresses a glycogen-targeting subunit of PP1 that is identical to the insulin-sensitive glycogen-targeting subunit G(L) of liver.
Insulin has been previously shown to regulate the expression of the hepatic glycogen-targeting subunit, G(L), of protein phosphatase 1 (PP1) and is believed to control the activity of the PP1-G(L) complex by modulation of the level of phosphorylase a, which allosterically inhibits the activity of PP1-G(L). These mechanisms contribute to the ability of insulin to increase hepatic glycogen synthe...
متن کاملA Whole-Body Model for Glycogen Regulation Reveals a Critical Role for Substrate Cycling in Maintaining Blood Glucose Homeostasis
Timely, and sometimes rapid, metabolic adaptation to changes in food supply is critical for survival as an organism moves from the fasted to the fed state, and vice versa. These transitions necessitate major metabolic changes to maintain energy homeostasis as the source of blood glucose moves away from ingested carbohydrates, through hepatic glycogen stores, towards gluconeogenesis. The integra...
متن کاملIncreased potency and efficacy of combined phosphorylase inactivation and glucokinase activation in control of hepatocyte glycogen metabolism.
Glucokinase and phosphorylase both have a high control strength over hepatocyte glycogen metabolism and are potential therapeutic targets for type 2 diabetes. We tested whether combined phosphorylase inactivation and glucokinase activation is a more effective strategy for controlling hepatic glycogen metabolism than single-site targeting. Activation of glucokinase by enzyme overexpression combi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 276 26 شماره
صفحات -
تاریخ انتشار 2001