Oxidative Modification of Neurofilament-L Induced by Endogenous Neurotoxin, Salsolinol
نویسنده
چکیده
The endogenous neurotoxin, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), has been considered a potential causative factor for the pathogenesis of Parkinson’s disease (PD). In this study, we examined oxidative modification of neurofilament-L (NF-L) induced by salsolinol. When disassembled NF-L was incubated with salsolinol, the aggregation of protein was increased with the concentration of sasolinol. The formation of carbonyl compound was obtained in salsolinol-mediated NF-L aggregates. This process was protected by free radical scavengers, such as N-acetyl-L-cysteine and glutathione. These results suggest that the aggregation of NF-L is mediated by salsolinol via the generation of free radicals. We also investigated the effects of copper ion on salsolinol-mediated NF-L modification. In the presence of copper ions, salsolinol enhanced the modification of NF-L. We suggest that salsolinol might be related to abnormal aggregation of NF-L which may be involved in the pathogenesis of neurodegenerative diseases and related disorders.
منابع مشابه
Salsolinol, a catechol neurotoxin, induces oxidative modification of cytochrome c
Methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), an endogenous neurotoxin, is known to perform a role in the pathogenesis of Parkinson's disease (PD). In this study, we evaluated oxidative modification of cytochrome c occurring after incubation with salsolinol. When cytochrome c was incubated with salsolinol, protein aggregation increased in a dosedependent manner. The formatio...
متن کاملOxidative modification of human ceruloplasmin induced by a catechol neurotoxin, salsolinol
Salsolinol (SAL), a compound derived from dopamine metabolism, is the most probable neurotoxin involved in the pathogenesis of Parkinson's disease (PD). In this study, we investigated the modification and inactivation of human ceruloplasmin (hCP) induced by SAL. Incubation of hCP with SAL increased the protein aggregation and enzyme inactivation in a dose-dependent manner. Reactive oxygen speci...
متن کاملSalsolinol, a dopamine-derived tetrahydroisoquinoline, induces cell death by causing oxidative stress in dopaminergic SH-SY5Y cells, and the said effect is attenuated by metallothionein.
The endogenous neurotoxin, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), has been considered a potential neurotoxin in the etiology of Parkinson's disease (PD). Salsolinol and N-methyl(R)-salsolinol were identified in the brains and cerebrospinal fluid (CSF) of PD patients. Oxidative stress is known to be one of the major contributing factors in the cascade that may finall...
متن کاملSalsolinol, an endogenous neurotoxin, enhances platelet aggregation and thrombus formation.
Salsolinol, an endogenous neurotoxin, is known to be involved in the neuropathy of Parkinson's disease and chronic alcoholism. In these diseases, increased thrombotic events are also commonly reported, yet the mechanism underlying remains poorly understood. Here we report that salsolinol can enhance agonist-induced platelet aggregation and granular secretion, which is essential in the thrombus ...
متن کاملMethylglyoxal increases dopamine level and leads to oxidative stress in SH-SY5Y cells.
More and more studies have suggested that methylglyoxal (MGO) induced by type-2 diabetes is related to Parkinson's disease (PD). However, little is known about the molecular mechanism. In this study, we explored the MGO toxicity in neuroblastoma SH-SY5Y cells. Neurotoxicity of MGO was measured by mitochondrial membrane potential, malondialdehyde, and methylthiazoletetrazolium assays. The levels...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011