microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis.
نویسندگان
چکیده
microRNA398 (miR398) is a conserved miRNA of plants that targets two of the three copper/zinc superoxide dismutases (SOD) of Arabidopsis (CSD1 and CSD2) by triggering cleavage or inhibiting translation of their mRNAs. We analysed the transcriptomes of mutants impaired in miR398 production, and found that the mRNAs encoding the copper chaperone for superoxide dismutase (CCS1), which delivers copper to CSD1 and CSD2 apoproteins in different cellular compartments, are undiscovered targets of miR398. We identified the cleavage site in CCS1 mRNAs by 5'-RACE PCR. We further show that both CCS1 protein and mRNA levels are tightly linked to the quantities of miR398, which are themselves dependent on the copper content in the medium. We generated transgenic plants carrying a CCS1 mRNA version resistant to cleavage by miR398, and demonstrated that both CCS1 mRNAs and proteins accumulate in these plants when miR398 is abundant and copper limiting. Moreover, we show that one of the ten ARGONAUTE proteins of Arabidopsis (AGO10) is involved in miR398-directed translational inhibition of CCS1 mRNAs, as CCS1 protein, but not CCS1 mRNAs accumulates in ago10 (zll) mutants. Thus, miR398 mediates the cleavage and translational inhibition of mRNAs encoding CCS1, the chaperone protein that is essential for generating the mature copper/zinc SODs of Arabidopsis. Our results also imply that new targets that have not been identified by computing analyses have yet to be discovered, even for an extensively studied miRNA such as miR398.
منابع مشابه
Involvement of microRNA in copper deficiency-induced repression of chloroplastic CuZn-superoxide dismutase genes in the moss Physcomitrella patens.
Superoxide dismutases (SODs) are metallo-enzymes that catalyze the dismutation of superoxide radicals. In Arabidopsis thaliana, the expression of CuZn-SOD in both the chloroplast and cytosol was reported to be down-regulated by microRNA398 (miR398) during growth on low copper. The moss Physcomitrella patens contains chloroplastic and cytosolic CuZn-SOD genes, but lacks miR398. From analysis of ...
متن کاملEnhancement of Solubility and Specific Activity of a Cu/Zn Superoxide Dismutase by Co-expression with a Copper Chaperone in Escherichia coli
Background: Human Cu/Zn superoxide dismutase (hSOD1) is an antioxidant enzyme with potential as a therapeutic agent. However, heterologous expression of hSOD1 has remained an issue due to Cu2+ insufficiency at protein active site, leading to low solubility and enzymatic activity.Objectives:The effect of co-expressed human copper chaperone (hCCS) to enhance the solubility and enzymatic act...
متن کاملMicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis.
In plants, copper is an essential micronutrient required for photosynthesis. Two of the most abundant copper proteins, plastocyanin and copper/zinc superoxide dismutase, are found in chloroplasts. Whereas plastocyanin is essential for photo-autotrophic growth, copper/zinc superoxide dismutase is dispensable and in plastids can be replaced by an iron superoxide dismutase when copper is limiting....
متن کاملMicroRNAs: Critical Regulators of mRNA Traffic and Translational Control with Promising Biotech and Therapeutic Applications
Context:MicroRNAs (miRNAs) are a class of short, endogenously-initiated, non-coding RNAs that post-transcriptionally control gene expression via translational repression or mRNA turnover. MiRNAs have attracted much attention in recent years as they play critical roles in gene expression and are promising tools with many biotech and therapeutic applications. The molecular mechanisms und...
متن کاملCopper delivery by the copper chaperone for chloroplast and cytosolic copper/zinc-superoxide dismutases: regulation and unexpected phenotypes in an Arabidopsis mutant.
Copper (Cu) is an important mineral nutrient found in chloroplasts as a cofactor associated with plastocyanin and Cu/Zn superoxide dismutase (Cu/ZnSOD). Superoxide dismutases are metallo-enzymes found in most oxygenic organisms with proposed roles in reducing oxidative stress. Several recent studies in Arabidopsis have shown that microRNAs and a SQUAMOSA promoter binding protein-like7 (SPL7) tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant journal : for cell and molecular biology
دوره 62 3 شماره
صفحات -
تاریخ انتشار 2010