delta-Opioid receptor antagonism induces NMDA receptor-dependent excitotoxicity in anoxic turtle cortex.
نویسندگان
چکیده
delta-Opioid receptor (DOR) activation is neuroprotective against short-term anoxic insults in the mammalian brain. This protection may be conferred by inhibition of N-methyl-d-aspartate receptors (NMDARs), whose over-activation during anoxia otherwise leads to a deleterious accumulation of cytosolic calcium ([Ca(2+)](c)), severe membrane potential (E(m)) depolarization and excitotoxic cell death (ECD). Conversely, NMDAR activity is decreased by approximately 50% with anoxia in the cortex of the painted turtle, and large elevations in [Ca(2+)](c), severe E(m) depolarization and ECD are avoided. DORs are expressed in high quantity throughout the turtle brain relative to the mammalian brain; however, the role of DORs in anoxic NMDAR regulation has not been investigated in turtles. We examined the effect of DOR blockade with naltrindole (1-10 micromol l(-1)) on E(m), NMDAR activity and [Ca(2+)](c) homeostasis in turtle cortical neurons during normoxia and the transition to anoxia. Naltrindole potentiated normoxic NMDAR currents by 78+/-5% and increased [Ca(2+)](c) by 13+/-4%. Anoxic neurons treated with naltrindole were strongly depolarized, NMDAR currents were potentiated by 70+/-15%, and [Ca(2+)](c) increased 5-fold compared with anoxic controls. Following naltrindole washout, E(m) remained depolarized and [Ca(2+)](c) became further elevated in all neurons. The naltrindole-mediated depolarization and increased [Ca(2+)](c) were prevented by NMDAR antagonism or by perfusion of the G(i) protein agonist mastoparan-7, which also reversed the naltrindole-mediated potentiation of NMDAR currents. Together, these data suggest that DORs mediate NMDAR activity in a G(i)-dependent manner and prevent deleterious NMDAR-mediated [Ca(2+)](c) influx during anoxic insults in the turtle cortex.
منابع مشابه
Morphine-Induced Analgesic Tolerance Effect on Gene Expression of the NMDA Receptor Subunit 1 in Rat Striatum and Prefrontal Cortex
Introduction: Morphine is a potent analgesic but its continual use results in analgesic tolerance. Mechanisms of this tolerance remain to be clarified. However, changes in the functions of μ-opioid and N-Methyl-D-aspartate (NMDA) receptors have been proposed in morphine tolerance. We examined changes in gene expression of the NMDA receptor subunit 1 (NR1) at mRNA levels i...
متن کاملRole of adenosine in NMDA receptor modulation in the cerebral cortex of an anoxia-tolerant turtle (Chrysemys picta belli).
Accumulation of the neuromodulator adenosine in the anoxia-tolerant turtle brain may play a key role in a protective decrease in excitatory neurotransmission during anoxia. Since excitatory neurotransmission is mediated largely by Ca2+ entry through N-methyl-D-aspartate (NMDA) receptors, we measured the effect of adenosine on NMDA-mediated Ca2+ transients in normoxic and anoxic turtle cerebroco...
متن کاملO 3:Therapeutic Potential of a Novel NMDA Receptor Subunit 2B Antagonist in a Mouse Model of Autoimmune Neuroinflammation
Glutamate-mediated excitotoxicity and neurodegeneration have been shown as pathophysiological hallmarks of multiple sclerosis (MS) and other autoimmune inflammatory CNS disorders. N‑Methyl‑D‑Aspartate (NMDA) receptors play a pivotal role in the mediation of neuronal glutamate excitotoxicity leading to cellular damage and apoptotic cell death. Current treatment approaches targeting glutamate exc...
متن کاملEffect of acute exposure to ethanol on distribution of NR1 subunit of NMDA receptor of glutamate in cerebral cortex of chick embryo
Introduction: There is considerable evidence that glutamate-mediated excitatory neurotransmission plays an important role in mediating the behavioral actions of acutely administered ethanol. The aim of the present study was to investigate the effect of acute ethanol exposure on NR1 subunit of NMDA (n-methyl-d-aspartate) receptor distribution in the cerebral cortex of chick embryo on the 10th...
متن کاملActivation of DOR attenuates anoxic K+ derangement via inhibition of Na+ entry in mouse cortex.
We have recently found that in the mouse cortex, activation of delta-opioid receptor (DOR) attenuates the disruption of K(+) homeostasis induced by hypoxia or oxygen-glucose deprivation. This novel observation suggests that DOR may protect neurons from hypoxic/ischemic insults via the regulation of K(+) homeostasis because the disruption of K(+) homeostasis plays a critical role in neuronal inj...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 211 Pt 21 شماره
صفحات -
تاریخ انتشار 2008