Bisphenol A facilitates bypass of androgen ablation therapy in prostate cancer.

نویسندگان

  • Yelena B Wetherill
  • Janet K Hess-Wilson
  • Clay E S Comstock
  • Supriya A Shah
  • C Ralph Buncher
  • Larry Sallans
  • Patrick A Limbach
  • Sandy Schwemberger
  • George F Babcock
  • Karen E Knudsen
چکیده

Prostatic adenocarcinomas depend on androgen for growth and survival. First line treatment of disseminated disease exploits this dependence by specifically targeting androgen receptor function. Clinical evidence has shown that androgen receptor is reactivated in recurrent tumors despite the continuance of androgen deprivation therapy. Several factors have been shown to restore androgen receptor activity under these conditions, including somatic mutation of the androgen receptor ligand-binding domain. We have shown previously that select tumor-derived mutants of the androgen receptor are receptive to activation by bisphenol A (BPA), an endocrine-disrupting compound that is leached from polycarbonate plastics and epoxy resins into the human food supply. Moreover, we have shown that BPA can promote cell cycle progression in cultured prostate cancer cells under conditions of androgen deprivation. Here, we challenged the effect of BPA on the therapeutic response in a xenograft model system of prostate cancer containing the endogenous BPA-responsive AR-T877A mutant protein. We show that after androgen deprivation, BPA enhanced both cellular proliferation rates and tumor growth. These effects were mediated, at least in part, through androgen receptor activity, as prostate-specific antigen levels rose with accelerated kinetics in BPA-exposed animals. Thus, at levels relevant to human exposure, BPA can modulate tumor cell growth and advance biochemical recurrence in tumors expressing the AR-T877A mutation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unique Bisphenol A Transcriptome in Prostate Cancer: Novel Effects on ERβ Expression That Correspond to Androgen Receptor Mutation Status

BACKGROUND Prostatic adenocarcinomas are dependent on androgen receptor (AR) activity for growth and progression, and therapy for disseminated disease depends on ablation of AR activity. Recurrent tumors ultimately arise wherein AR has been re-activated. One mechanism of AR restoration is via somatic mutation, wherein cells containing mutant receptors become susceptible to activation by alterna...

متن کامل

Determinant of Therapeutic Response in Prostate Cancer Retinoblastoma Tumor Suppressor Status Is a Critical

The retinoblastoma tumor suppressor protein (RB), a critical mediator of cell cycle progression, is functionally inactivated in the majority of human cancers, including prostatic adenocarcinoma. The importance of RB tumor suppressor function in this disease is evident because 25% to 50% of prostatic adenocarcinomas harbor aberrations in RB pathway. However, no previous studies challenged the co...

متن کامل

Retinoblastoma tumor suppressor status is a critical determinant of therapeutic response in prostate cancer cells.

The retinoblastoma tumor suppressor protein (RB), a critical mediator of cell cycle progression, is functionally inactivated in the majority of human cancers, including prostatic adenocarcinoma. The importance of RB tumor suppressor function in this disease is evident because 25% to 50% of prostatic adenocarcinomas harbor aberrations in RB pathway. However, no previous studies challenged the co...

متن کامل

Knockdown of HSF1 sensitizes resistant prostate cancer cell line to chemotherapy

The treatment of prostate cancer patients usually starts with androgen ablation and followed by chemotherapy; however, in some cases the tumor develops resistant phenotype. Combination therapy is currently regarded as a cornerstone in cancer therapy to overcome the drug resistance. Herein, we investigated the combinatory effect of Docetaxel and Trastuzumab with a novel nanomedicine, BCc1. Also,...

متن کامل

Signal Transducers and Activators of Transcription 3 Androgen-Independent Progression in Prostate Cancer via Increased Hsp27 after Androgen Ablation Facilitates

One strategy to improve therapies in prostate cancer involves targeting cytoprotective genes activated by androgen withdrawal to delay the emergence of the androgen-independent (AI) phenotype. The objectives of this study were to define changes in Hsp27 levels after androgen ablation and to evaluate the functional relevance of these changes in AI progression. Using a tissue microarray of 232 sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 5 12  شماره 

صفحات  -

تاریخ انتشار 2006