In situ observation of size-scale effects on the mechanical properties of ZnO nanowires.
نویسندگان
چکیده
In this investigation, the size-scale in mechanical properties of individual [0001] ZnO nanowires and the correlation with atomic-scale arrangements were explored via in situ high-resolution transmission electron microscopy (TEM) equipped with atomic force microscopy (AFM) and nanoindentation (NI) systems. The Young's modulus was determined to be size-scale-dependent for nanowires with diameter, d, in the range of 40 nm ≤ d ≤ 110 nm, and reached the maximum of ∼ 249 GPa for d = 40 nm. However, this phenomenon was not observed for nanowires in the range of 200 nm ≤ d ≤ 400 nm, where an average constant Young's modulus of ∼ 147.3 GPa was detected, close to the modulus value of bulk ZnO. A size-scale dependence in the failure of nanowires was also observed. The thick ZnO nanowires (d ≥ 200 nm) were brittle, while the thin nanowires (d ≤ 110 nm) were highly flexible. The diameter effect and enhanced Young's modulus observed in thin ZnO nanowires are due to the combined effects of surface relaxation and long-range interactions present in ionic crystals, which leads to much stiffer surfaces than bulk wires. The brittle failure in thicker ZnO wires was initiated from the outermost layer, where the maximum tensile stress operates and propagates along the (0001) planes. After a number of loading and unloading cycles, the highly compressed region of the thinner nanowires was transformed from a crystalline to an amorphous phase, and the region near the neutral zone was converted into a mixture of disordered atomic planes and bent lattice fringes as revealed by high-resolution images.
منابع مشابه
Elasticity size effects in ZnO nanowires--a combined experimental-computational approach.
Understanding the mechanical properties of nanowires made of semiconducting materials is central to their application in nano devices. This work presents an experimental and computational approach to unambiguously quantify size effects on the Young's modulus, E, of ZnO nanowires and interpret the origin of the scaling. A micromechanical system (MEMS) based nanoscale material testing system is u...
متن کاملForced vibration of piezoelectric nanowires based on nonlocal elasticity theory
In this paper, a numerical solution procedure is presented for the free and forced vibration of a piezoelectric nanowire under thermo-electro-mechanical loads based on the nonlocal elasticity theory within the framework of Timoshenko beam theory. The influences of surface piezoelectricity, surface elasticity and residual surface stress are taken into consideration. Using Hamilton’s principle, t...
متن کاملStudy the Surface Effect on the Buckling of Nanowires Embedded in Winkler–Pasternak Elastic Medium Based on a Nonlocal Theory
Nano structures such as nanowires, nanobeams and nanoplates have been investigated widely for their innovative properties. In this paper the buckling of nanowires surrounded in a Winkler - Pasternak elastic medium has been examined based on the nonlocal Euler-Bernoully model with considering the surface effects. In the following a parametric study that explores the influence of numerous physica...
متن کاملOptical Properties of ZnO Nanowires and Nanorods Synthesized by Two Step Oxidation Process
ZnO nanowires with a diameter of 70 nm and nanorods with a diameter in the range of 100-150 nm and two micrometer in length were grown on glass substrates by resistive evaporation method and applying a two step oxidation process at low temperatures, without using any catalyst, template or buffer layer. XRD pattern of these nanostructures indicated a good crystallinity property with wurtzite hex...
متن کاملDesign Concepts, Fabrication and Advanced Characterization Methods of Innovative Piezoelectric Sensors Based on ZnO Nanowires
Micro- and nano-scale materials and systems based on zinc oxide are expected to explode in their applications in the electronics and photonics, including nano-arrays of addressable optoelectronic devices and sensors, due to their outstanding properties, including semiconductivity and the presence of a direct bandgap, piezoelectricity, pyroelectricity and biocompatibility. Most applications are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanotechnology
دوره 22 26 شماره
صفحات -
تاریخ انتشار 2011