MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo.

نویسندگان

  • Tilde Eskildsen
  • Hanna Taipaleenmäki
  • Jan Stenvang
  • Basem M Abdallah
  • Nicholas Ditzel
  • Anne Yael Nossent
  • Mads Bak
  • Sakari Kauppinen
  • Moustapha Kassem
چکیده

Elucidating the molecular mechanisms that regulate human stromal (mesenchymal) stem cell (hMSC) differentiation into osteogenic lineage is important for the development of anabolic therapies for treatment of osteoporosis. MicroRNAs (miRNAs) are short, noncoding RNAs that act as key regulators of diverse biological processes by mediating translational repression or mRNA degradation of their target genes. Here, we show that miRNA-138 (miR-138) modulates osteogenic differentiation of hMSCs. miRNA array profiling and further validation by quantitative RT-PCR (qRT-PCR) revealed that miR-138 was down-regulated during osteoblast differentiation of hMSCs. Overexpression of miR-138 inhibited osteoblast differentiation of hMSCs in vitro, whereas inhibition of miR-138 function by antimiR-138 promoted expression of osteoblast-specific genes, alkaline phosphatase (ALP) activity, and matrix mineralization. Furthermore, overexpression of miR-138 reduced ectopic bone formation in vivo by 85%, and conversely, in vivo bone formation was enhanced by 60% when miR-138 was antagonized. Target prediction analysis and experimental validation by luciferase 3' UTR reporter assay confirmed focal adhesion kinase, a kinase playing a central role in promoting osteoblast differentiation, as a bona fide target of miR-138. We show that miR-138 attenuates bone formation in vivo, at least in part by inhibiting the focal adhesion kinase signaling pathway. Our findings suggest that pharmacological inhibition of miR-138 by antimiR-138 could represent a therapeutic strategy for enhancing bone formation in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osteogenic Differentiation of Mesenchymal Stem Cells Via Osteoblast- Imprinted Substrate: In Vitro and In Vivo Evaluation in Rat Model

BACKGROUND: Stem cells have great effects in clinical cell-based therapy. Accordingly, controlling the behavior and directing the fate of stem cells cultured in the laboratory is an important issue. OBJECTIVES: The aim of this study was to evaluate osteogenic properties of adipose derived mesenchymal stem cells (ADSCs) which differentiated toward osteogenic linage by osteoblast-imprinted substr...

متن کامل

Biological behaviors of muscarinic receptors in mesenchymal stem cells derived from human placenta and bone marrow

Objective(s): Cells perform their functional activities by communicating with each other through endogenous substances and receptors. Post-translation, stem cells function properly in new host tissue by carrying specific cell surface receptors. We aimed to characterize muscarinic receptor subtypes in mesenchymal stem cells (MSCs) together with osteogenic and adipogenic...

متن کامل

Expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells regulates proliferation, differentiation, and maintenance of hematopoietic stem and progenitor cells.

The melanoma cell adhesion molecule defines mesenchymal stromal cells in the human bone marrow that regenerate bone and establish a hematopoietic microenvironment in vivo. The role of the melanoma cell adhesion molecule in primary human mesenchymal stromal cells and the maintenance of hematopoietic stem and progenitor cells during ex vivo culture has not yet been demonstrated. We applied RNA in...

متن کامل

Osteogenic Differentiation of Rat Mesenchymal Stem Cells from Adipose Tissue in Comparison with Bone Marrow Mesenchymal Stem Cells: Melatonin As a Differentiation Factor

Background: Adipose-derived stem cells (ADSC) could be an appealing alternative to bone marrow stem cells (BMSC) for engineering cell-based osteoinductive grafts. Meanwhile, prior studies have demonstrated that melatonin can stimulate osteogenic differentiation. Therefore, we assayed and compared the melatonin effect on osteogenic differentiation of BMSC with that of ADSC. Methods: Mesenchymal...

متن کامل

Osteogenic actions of the osteogenic growth peptide on bovine marrow mesenchymal stromal cells in culture

S: The osteogenic growth peptide (OGP) regulates the differentiation of marrow mesenchymal stem cells derived from human and rodent cell lines into osteoblasts. Whether OGP directly regulates the bovine marrow mesenchymal stem cells differentiating into osteoblasts remains unknown. In this study, we evaluated the effects of OGP on the growth and differentiation of bovine marrow mesenchymal stem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 15  شماره 

صفحات  -

تاریخ انتشار 2011