Three-Dimensional Delayed-Detonation Model of Type Ia Supernova

نویسندگان

  • Vadim N. Gamezo
  • Alexei M. Khokhlov
  • Elaine S. Oran
چکیده

We study a Type Ia supernova explosion using large-scale three-dimensional numerical simulations based on reactive fluid dynamics with a simplified mechanism for nuclear reactions and energy release. The initial deflagration stage of the explosion involves a subsonic turbulent thermonuclear flame propagating in the gravitational field of an expanding white dwarf. The deflagration produces an inhomogeneous mixture of unburned carbon and oxygen with intermediate-mass and iron-group elements in central parts of the star. During the subsequent detonation stage, a supersonic detonation wave propagates through the material unburned by the deflagration. The total energy released in this delayed-detonation process, (1.3−1.6)×10 ergs, is consistent with a typical range of kinetic energies obtained from observations. In contrast to the deflagration model that releases only about 0.6× 10 ergs, the delayed-detonation model does not leave carbon, oxygen, and intermediate-mass elements in central parts of a white dwarf. This removes the key disagreement between three-dimensional simulations and observations, and makes a delayed detonation the mostly likely mechanism for Type Ia supernova explosions. Subject headings: supernovae: general — hydrodynamics — nuclear reactions, nucleosynthesis, abundances Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, Washington, D.C. 20375, gamezo @lcp.nrl.navy.mil, oran @lcp.nrl.navy.mil Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, ajk @oddjob.uchicago.edu

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Subgrid-scale Model for Deflagration-to-Detonation Transitions in Type Ia Supernova Explosion Simulations

Context. A promising model for normal Type Ia supernova (SN Ia) explosions are delayed detonations of Chandrasekhar-mass white dwarfs, in which the burning starts out as a subsonic deflagration and turns at a later phase of the explosion into a supersonic detonation. The mechanism of the underlying deflagration-to-detonation transition (DDT) is unknown in detail, but necessary conditions have b...

متن کامل

Deflagrations and detonations in thermonuclear supernovae.

We study a type Ia supernova explosion using three-dimensional numerical simulations based on reactive fluid dynamics. We consider a delayed-detonation model that assumes a deflagration-to-detonation transition. In contrast with the pure deflagration model, the delayed-detonation model releases enough energy to account for a healthy explosion, and does not leave carbon, oxygen, and intermediate...

متن کامل

Three-dimensional Combustion in Type Ia Supernovae

Turbulent combustion is three-dimensional. Turbulence in a Type Ia supernova is driven on large scales by the buoyancy of burning products. The turbulent cascade penetrates down to very small scales, and makes the rate of deflagration independent of the microphysics. The competition between the turbulent cascade and the freeze-out of turbulent motions due to stellar expansion determines the lar...

متن کامل

Delayed detonations in full-star models of Type Ia supernova explosions

Aims. We present the first full-star three-dimensional explosion simulations of thermonuclear supernovae including parameterized deflagration-to-detonation transitions that occur once the flame enters the distributed burning regime. Methods. Treating the propagation of both the deflagration and the detonation waves in a common front-tracking approach, the detonation is prevented from crossing a...

متن کامل

Flame-driven Deflagration-to-detonation Transitions in Type Ia Supernovae?

Although delayed detonation models of thermonuclear explosions of white dwarfs seem promising for reproducing Type Ia supernovae, the transition of the flame propagation mode from subsonic deflagration to supersonic detonation remains hypothetical. A potential instant for this transition to occur is the onset of the distributed burning regime, i.e. the moment when turbulence first affects the i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008