Transgenic expression of a dominant-negative ASIC3 subunit leads to increased sensitivity to mechanical and inflammatory stimuli.
نویسندگان
چکیده
Molecular and behavioral evidence suggests that acid-sensing ion channels (ASICs) contribute to pain processing, but an understanding of their precise role remains elusive. Existing ASIC knock-out mouse experiments are complicated by the heteromultimerization of ASIC subunits. Therefore, we have generated transgenic mice that express a dominant-negative form of the ASIC3 subunit that inactivates all native neuronal ASIC-like currents by oligomerization. Using whole-cell patch-clamp recordings, we examined the response properties of acutely isolated dorsal root ganglion neurons to protons (pH 5.0). We found that whereas 33% of the proton-responsive neurons from wild-type mice exhibited an ASIC-like transient response, none of the neurons from the transgenic mice exhibited a transient inward current. Capsaicin-evoked responses mediated by the TRPV1 receptor were unaltered in transgenic mice. Adult male wild-type and transgenic mice were subjected to a battery of behavioral nociceptive assays, including tests of thermal, mechanical, chemical/inflammatory, and muscle pain. The two genotypes were equally sensitive to thermal pain and to thermal hypersensitivity after inflammation. Compared with wild types, however, transgenic mice were more sensitive to a number of modalities, including mechanical pain (von Frey test, tail-clip test), chemical/inflammatory pain (formalin test, 0.6% acetic acid writhing test), mechanical hypersensitivity after zymosan inflammation, and mechanical hypersensitivity after intramuscular injection of hypotonic saline. These data reinforce the hypothesis that ASICs are involved in both mechanical and inflammatory pain, although the increased sensitivity of transgenic mice renders it unlikely that they are direct transducers of nociceptive stimuli.
منابع مشابه
Role of acid-sensing ion channel 3 in sub-acute-phase inflammation
BACKGROUND Inflammation-mediated hyperalgesia involves tissue acidosis and sensitization of nociceptors. Many studies have reported increased expression of acid-sensing ion channel 3 (ASIC3) in inflammation and enhanced ASIC3 channel activity with pro-inflammatory mediators. However, the role of ASIC3 in inflammation remains inconclusive because of conflicting results generated from studies of ...
متن کاملExpressing acid-sensing ion channel 3 in the brain alters acid-evoked currents and impairs fear conditioning
Previous studies on mice with a disruption of the gene encoding acid-sensing ion channel 1a (ASIC1a) suggest that ASIC1a is required for normal fear behavior. To investigate the effects of altering the subunit composition of brain ASICs on behavior, we developed transgenic mice expressing ASIC3 via the pan-neuronal synapsin I promoter. These mice express ASIC3 in the brain, where the endogenous...
متن کاملStudy of Organic Solvent Tolerance and Increased Antibiotic Resistance Properties in E. coli gyrA Mutants
Ciprofloxacin is one of the most widely used antibiotics for the treatment of several infections caused by Gram-negative bacteria, like E. coli. Changes in gyrA, encoding GyrA subunit of DNA gyrase, cause the resistance to ciprofloxacin. Some ciprofloxacin resistant gyrA mutants acquired constitutive expression of marRAB operon due to the gaining mutations in marR, a repressor of this operon...
متن کاملStudy of Organic Solvent Tolerance and Increased Antibiotic Resistance Properties in E. coli gyrA Mutants
Ciprofloxacin is one of the most widely used antibiotics for the treatment of several infections caused by Gram-negative bacteria, like E. coli. Changes in gyrA, encoding GyrA subunit of DNA gyrase, cause the resistance to ciprofloxacin. Some ciprofloxacin resistant gyrA mutants acquired constitutive expression of marRAB operon due to the gaining mutations in marR, a repressor of this operon...
متن کاملHow nerve growth factor drives physiological and inflammatory expressions of acid-sensing ion channel 3 in sensory neurons.
Nerve growth factor (NGF) is a key element of inflammatory pain. It induces hyperalgesia by up-regulating the transcription of genes encoding receptors, ion channels, and neuropeptides. Acid-sensing ion channel 3 (ASIC3), a depolarizing sodium channel gated by protons during tissue acidosis, is specifically expressed in sensory neurons. It has been associated to cardiac ischemic and inflammator...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 43 شماره
صفحات -
تاریخ انتشار 2005