Sulfate secretion and chloride absorption are mediated by the anion exchanger DRA (Slc26a3) in the mouse cecum.
نویسندگان
چکیده
Inorganic sulfate (SO₄²⁻) is essential for a multitude of physiological processes. The specific molecular pathway has been identified for uptake from the small intestine but is virtually unknown for the large bowel, although there is evidence for absorption involving Na⁺-independent anion exchange. A leading candidate is the apical chloride/bicarbonate (Cl⁻/HCO₃⁻) exchanger DRA (down-regulated in adenoma; Slc26a3), primarily linked to the Cl⁻ transporting defect in congenital chloride diarrhea. The present study set out to characterize transepithelial ³⁵SO₄²⁻ and ³⁶Cl⁻ fluxes across the isolated, short-circuited cecum from wild-type (WT) and knockout (KO) mice and subsequently to define the contribution of DRA. The cecum demonstrated simultaneous net SO₄²⁻ secretion (-8.39 ± 0.88 nmol·cm⁻²·h⁻¹) and Cl⁻ absorption (10.85 ± 1.41 μmol·cm⁻²·h⁻¹). In DRA-KO mice, SO₄²⁻ secretion was reversed to net absorption via a 60% reduction in serosal to mucosal SO₄²⁻ flux. Similarly, net Cl⁻ absorption was abolished and replaced by secretion, indicating that DRA represents a major pathway for transcellular SO₄²⁻ secretion and Cl⁻ absorption. Further experiments including the application of DIDS (500 μM), bumetanide (100 μM), and substitutions of extracellular Cl⁻ or HCO₃⁻/CO₂ helped to identify specific ion dependencies and driving forces and suggested that additional anion exchangers were operating at both apical and basolateral membranes supporting SO₄²⁻ transport. In conclusion, DRA contributes to SO₄²⁻ secretion via DIDS-sensitive HCO₃⁻/SO₄²⁻ exchange, in addition to being the principal DIDS-resistant Cl⁻/HCO₃⁻ exchanger. With DRA linked to the pathogenesis of other gastrointestinal diseases extending its functional characterization offers a more complete picture of its role in the intestine.
منابع مشابه
Transcellular oxalate and Cl- absorption in mouse intestine is mediated by the DRA anion exchanger Slc26a3, and DRA deletion decreases urinary oxalate.
Active transcellular oxalate transport in the mammalian intestine contributes to the homeostasis of this important lithogenic anion. Several members of the Slc26a gene family of anion exchangers have a measurable oxalate affinity and are expressed along the gut, apically and basolaterally. Mouse Slc26a6 (PAT1) targets to the apical membrane of enterocytes in the small intestine, and its deletio...
متن کاملNative and recombinant Slc26a3 (downregulated in adenoma, Dra) do not exhibit properties of 2Cl-/1HCO3- exchange.
The recent proposal that Dra/Slc26a3 mediates electrogenic 2Cl(-)/1HCO(3)(-) exchange suggests a required revision of classical concepts of electroneutral Cl(-) transport across epithelia such as the intestine. We investigated 1) the effect of endogenous Dra Cl(-)/HCO(3)(-) activity on apical membrane potential (V(a)) of the cecal surface epithelium using wild-type (WT) and knockout (KO) mice; ...
متن کاملThe PDZ-interaction of the intestinal anion exchanger downregulated in adenoma (DRA; SLC26A3) facilitates its movement into Rab11a-positive recycling endosomes.
Electroneutral NaCl absorption in the ileum and colon is mediated by downregulated in adenoma (DRA) (Cl⁻/HCO₃⁻ exchanger; SLC26A3) and Na⁺/H⁺ exchanger 3 (NHE3, SLC9A3). Surface expression of transport proteins undergoes basal and regulated recycling by endo- and exocytosis. Expression and activity of DRA in the plasma membrane depend on intact lipid rafts, phosphatidylinositol 3-kinase (PI3-ki...
متن کاملMolecular characterization of Slc26a3 and Slc26a6 anion transporters in guinea pig pancreatic duct.
HCO3 in pancreatic juice arises from the pancreatic duct cells. Secretin stimulates HCO3 secretion via a mechanism that involves activation of the adenylate cyclase pathway, activation of both basolateral K channels and the apical CFTR Cl channel, and stimulation of an apical Slc26mediated Cl/HCO3 exchanger (1). The Slc26 anion exchangers, Slc26a3 and Slc26a6, have both been localized to the ap...
متن کاملThe functional and physical relationship between the DRA bicarbonate transporter and carbonic anhydrase II.
COOH-terminal cytoplasmic tails of chloride/bicarbonate anion exchangers (AE) bind cytosolic carbonic anhydrase II (CAII) to form a bicarbonate transport metabolon, a membrane protein complex that accelerates transmembrane bicarbonate flux. To determine whether interaction with CAII affects the downregulated in adenoma (DRA) chloride/bicarbonate exchanger, anion exchange activity of DRA-transfe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 305 2 شماره
صفحات -
تاریخ انتشار 2013