Motion based situation recognition in group meetings

نویسندگان

  • Julia Moehrmann
  • Xin Wang
  • Gunther Heidemann
چکیده

We present an unobtrusive vision based system for the recognition of situations in group meetings. The system uses a three-stage architecture, consisting of one video processing stage and two classification stages. The video processing stage detects motion in the videos and extracts up to 12 features from this data. The classification stage uses Hidden Markov Models to first identify the activity of every participant in the meeting and afterwards recognize the situation as a whole. The feature extraction uses position information of both hands and the face to extract motion features like speed, acceleration and motion frequency, as well as distance based features. We investigate the discriminative ability of these features and their applicability to the task of interaction recognition. A two-stage Hidden Markov Model classifier is applied to perform the recognition task. The developed system classifies the situation in 94% of all frames in our video test set correctly, where 3% of the test data is misclassified due to contradictory behavior of the participants. The results show that unimodal data can be sufficient to recognize complex situations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Hand Motion Evaluation Using HMM

Gesture and motion recognition are needed for a variety of applications. The use of human hand motions as a natural interface tool has motivated researchers to conduct research in the modeling, analysis and recognition of various hand movements. In particular, human-computer intelligent interaction has been a focus of research in vision-based gesture recognition. In this work, we introduce a 3-...

متن کامل

Shape-Motion Based Athlete Tracking for Multilevel Action Recognition

An automatic human shape-motion analysis method based on a fusion architecture is proposed for human action recognition in videos. Robust shape-motion features are extracted from human points detection and tracking. The features are combined within the Transferable Belief Model (TBM) framework for action recognition. The TBM-based modelling and fusion process allows to take into account impreci...

متن کامل

Applying mean shift and motion detection approaches to hand tracking in sign language

Hand gesture recognition is very important to communicate in sign language. In this paper, an effective object tracking and hand gesture recognition method is proposed. This method is combination of two well-known approaches, the mean shift and the motion detection algorithm. The mean shift algorithm can track objects based on the color, then when hand passes the face occlusion happens. Several...

متن کامل

Automatic recognition of multiparty human interactions using dynamic Bayesian networks

Relating statistical machine learning approaches to the automatic analysis of multiparty communicative events, such as meetings, is an ambitious research area. We have investigated automatic meeting segmentation both in terms of “Meeting Actions” and “Dialogue Acts”. Dialogue acts model the discourse structure at a fine grained level highlighting individual speaker intentions. Group meeting act...

متن کامل

I-19: The Future of Medical Education: from The Classroom to i-tunes

Medical training has been lately the subject of intense scrutiny. The knowledge transfer approach has shifted focus on the trainee as an active participant in the education process. The traditional view that learning stems from the transmission of knowledge, has recently been challenged. Although controversial, some suggest that a student can maximize this learning process when educators tailor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009