Automatic Dust Storm Detection Based on Supervised Classification of Multispectral Data

نویسندگان

  • Pablo Rivas-Perea
  • José-Gerardo Rosiles
  • Mario Ignacio Chacon Murguia
  • James Tilton
چکیده

This paper address the detection of dust storms based on a probabilistic analysis of multispectral images. We develop a feature set based on the analysis of spectral bands reported in the literature. These studies have focused on the visual identification of the image channels that reflect the presence of dust storms through correlation with meteorological reports. Using this feature set we develop a Maximum Likelihood classifier and a Probabilistic Neural Network (PNN) to automate the dust storm detection process. The data sets are MODIS multispectral bands from NASA Terra satellite. Findings indicate that the PNN provides improved classification performance with reference to the ML classifier. Furthermore, the proposed schemes allow real-time processing of satellite data at 1 km resolutions which is an improvement compared to the 10 km resolution currently provided by other detection methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection

Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...

متن کامل

Automatic Martian Dust Storm Detection from Multiple Wavelength Data Based on Decision Level Fusion

This paper presents automatic Martian dust storm detection from multiple wavelength data based on decision level fusion. In our proposed method, visual features are first extracted from multiple wavelength data, and optimal features are selected for Martian dust storm detection based on the minimal-Redundancy-Maximal-Relevance algorithm. Second, the selected visual features are used to train th...

متن کامل

Automatic Road Detection and Extraction From MultiSpectral Images Using a New Hierarchical Object-based Method

Road detection and Extraction is one of the most important issues in photogrammetry, remote sensing and machine vision. A great deal of research has been done in this area based on multispectral images, which are mostly relatively good results. In this paper, a novel automated and hierarchical object-based method for detecting and extracting of roads is proposed. This research is based on the M...

متن کامل

Dust Storm Detection Using a Neural Network with Uncertainty and Ambiguity Output Analysis

Dust storms are meteorological phenomena that may affect human life. Therefore, it is of great interest to work towards the development of a stand-alone dust storm detection system that may help to prevent and/or counteract its negative effects. This work proposes a dust storm detection system based on an Artificial Neural Network, ANN. The ANN is designed to identify not just dust storm areas ...

متن کامل

A Classic and Neural Probabilistic Approach to the Dust Storm Detection Problem

This paper address the problem of dust storm detection based on multispectral image analysis from a probabilistic point of view. Two classifiers are designed, one based on classic probability theory and other based on a probabilistic computational intelligence approach. The first classifier is designed under the Maximum Likelihood Estimation (MLE) model, and the second with a Probabilistic Neur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010