Purines induce directed migration and rapid homing of microglia to injured pyramidal neurons in developing hippocampus.

نویسندگان

  • Dana Kurpius
  • Eric P Nolley
  • Michael E Dailey
چکیده

Traumatic CNS injury activates and mobilizes resident parenchymal microglia (MG), which rapidly accumulate near injured neurons where they transform into phagocytes. The mechanisms underlying this rapid 'homing' in situ are unknown. Using time-lapse confocal imaging in acutely excised neonatal hippocampal slices, we show that rapid accumulation of MG near somata of injured pyramidal neurons in the stratum pyramidale (SP) results from directed migration from tissue regions immediately adjacent to (<200 microm from) the SP. Time-lapse sequences also reveal a 'spreading activation wave' wherein MG situated progressively farther from the SP begin to migrate later and exhibit less directional migration toward the SP. Because purines have been implicated in MG activation and chemotaxis, we tested whether ATP/ADP released from injured pyramidal neurons might account for these patterns of MG behavior. Indeed, application of apyrase, which degrades extracellular ATP/ADP, inhibits MG motility and homing to injured neurons in the SP. Moreover, bath application of exogenous ATP/ADP disrupts MG homing by inducing directional migration toward the slice exterior and away from injured neurons. These results indicate that extracellular ATP/ADP is both necessary and sufficient to induce directional migration and rapid homing of neonatal MG to injured neurons in situ. Rapid, ATP/ADP-dependent MG homing may promote clearance of dead and dying cells and help limit secondary damage during the critical first few hours after neuronal injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Early activation, motility, and homing of neonatal microglia to injured neurons does not require protein synthesis.

Neuronal injury in CNS tissues induces a rapid activation and mobilization of resident microglia (MG). It is widely assumed that changes in gene expression drive the morphological transformation of MG and regulate their mobilization during activation. Here, we used acutely excised neonatal rat brain slices to test whether the morphological transformation and homing of MG to injured neurons requ...

متن کامل

The effect of prenatal restraint stress on the number and size of neurons in the rat hippocampal subdivisions

Animal studies have shown that prenatal stress is able to induce long-lasting neurobiological and behavioral alterations in adult offspring. In spite of the facts that hippocampus is sensitive to early developmental influences and its known functional importance in learning and memory, few data are available on the effect of prenatal stress on the structure of hippocampus. Therefore, this study...

متن کامل

The effect of prenatal restraint stress on the number and size of neurons in the rat hippocampal subdivisions

Animal studies have shown that prenatal stress is able to induce long-lasting neurobiological and behavioral alterations in adult offspring. In spite of the facts that hippocampus is sensitive to early developmental influences and its known functional importance in learning and memory, few data are available on the effect of prenatal stress on the structure of hippocampus. Therefore, this study...

متن کامل

Neurotrophic effect of hydroalcoholic extract of Malva neglecta leaf on pyramidal neurons of CA1 hippocampus of male Wistar rat following ischemia /reperfusion

Abstract Background: Stroke is the second leading cause of death in the world and has irreversible consequences. Cerebral ischemia/reperfusion (I/R) through production of oxidants and inflammatory markers causes apoptosis of brain neurons. On the other hand, in various studies, the antioxidant and anti-inflammatory effects of the Malva neglecta have been proven. Therefore, in this study, we inv...

متن کامل

Low-frequency Stimulation Decreases Hyperexcitability through Adenosine A1 Receptors in the Hippocampus of Kindled Rats

Introduction: In this study, the role of A1 adenosine receptors in improving the effect of Low-Frequency Electrical Stimulation (LFS) on seizure-induced hyperexcitability of hippocampal CA1 pyramidal neurons was investigated. Methods: A semi-rapid hippocampal kindling model was used to induce seizures in male Wistar rats. Examination of the electrophysiological properties of CA1 pyramidal neur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Glia

دوره 55 8  شماره 

صفحات  -

تاریخ انتشار 2007