Three‐dimensional printing CT‐derived objects with controllable radiopacity
نویسندگان
چکیده
PURPOSE The goal of this work was to develop phantoms for the optimization of pre-operative computed tomography (CT) scans of the prostate artery, which are used for embolization planning. METHODS Acrylonitrile butadiene styrene (ABS) pellets were doped with barium sulfate and extruded into filaments suitable for 3D printing on a fused deposition modeling (FDM) printer. Cylinder phantoms were created to evaluate radiopacity as a function of doping percentage. Small-diameter tree phantoms were created to assess their composition and dimensional accuracy. A half-pelvis phantom was created using clinical CT images, to assess the printer's control over cortical bone thickness and cancellous bone attenuation. CT-derived prostate artery phantoms were created to simulate complex, contrast-filled arteries. RESULTS A linear relationship (R = 0.998) was observed between barium sulfate added (0%-10% by weight), and radiopacity (-31 to 1454 Hounsfield Units [HU]). Micro-CT scans showed even distribution of the particles, with air pockets comprising 0.36% by volume. The small vessels were found to be oversized by a consistent amount of 0.08 mm. Micro-CT scans revealed that the phantoms' interiors were completely filled in. The maximum HU values of cortical bone in the phantom were lower than that of the filament, a result of CT image reconstruction. Creation of cancellous bone regions with lower HU values, using the printer's infill parameter, was successful. Direct volume renderings of the pelvis and prostate artery were similar to the clinical CT, with the exception that the surfaces of the phantom objects were not as smooth. CONCLUSIONS It is possible to reliably create FDM 3D printer filaments with predictable radiopacity in a wide range of attenuation values, which can be used to print dimensionally accurate radiopaque objects derived from CT data. Phantoms of this type can be quickly and inexpensively developed to assess and optimize CT protocols for specific clinical applications.
منابع مشابه
Bismuth Infusion of ABS Enables Additive Manufacturing of Complex Radiological Phantoms and Shielding Equipment
Radiopacity is a critical property of materials that are used for a range of radiological applications, including the development of phantom devices that emulate the radiodensity of native tissues and the production of protective equipment for personnel handling radioactive materials. Three-dimensional (3D) printing is a fabrication platform that is well suited to creating complex anatomical re...
متن کامل3D Printing of Preclinical X-ray Computed Tomographic Data Sets
Three-dimensional printing allows for the production of highly detailed objects through a process known as additive manufacturing. Traditional, mold-injection methods to create models or parts have several limitations, the most important of which is a difficulty in making highly complex products in a timely, cost-effective manner.(1) However, gradual improvements in three-dimensional printing t...
متن کاملA novel three-dimensional printing of electroconductive scaffolds for bone cancer therapy application
Objective(s): Tissue engineering aims to achieve a tissue, which has highly interconnected porous microstructure concurrent with appropriate mechanical and biological properties. Materials and Methods: Therefore, the microstructure scaffolds are of great importance in this field. In the present study, an electroconductive poly-lactic acid (EC-PLA) filament used to fabricate a porous bone ...
متن کاملPattern Transformation of Heat-Shrinkable Polymer by Three-Dimensional (3D) Printing Technique
A significant challenge in conventional heat-shrinkable polymers is to produce controllable microstructures. Here we report that the polymer material fabricated by three-dimensional (3D) printing technique has a heat-shrinkable property, whose initial microstructure can undergo a spontaneous pattern transformation under heating. The underlying mechanism is revealed by evaluating internal strain...
متن کاملRapid Manufacturing of Co-Cr-Mo Implants by Three-Dimentional Printing Process for Orthopedic Applications
The fabrication of complex-shaped parts out of (wt %) Co-28Cr-6Mo alloy by three-dimensional printing (3DP) was studied using two grades of the alloy with average particle sizes of 20 and 75 μm. To produce sound specimens, 3DP processing parameters were tuned. The sintering behavior of the powders was characterized by the dilatometric analysis. Batch sintering in argon atmosphere at 1280 °...
متن کامل