Supplementary Material for “Statistical test for consistent estimation of causal effects in linear non-Gaussian models”
نویسندگان
چکیده
This document contains supplementary material to the article ‘Statistical test for consistent estimation of causal effects in linear non-Gaussian models’, AISTATS 2012. A table of contents is given below.
منابع مشابه
Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملStatistical test for consistent estimation of causal effects in linear non-Gaussian models
In many fields of science researchers are faced with the problem of estimating causal effects from non-experimental data. A key issue is to avoid inconsistent estimators due to confounding by measured or unmeasured covariates, a problem commonly solved by ‘adjusting for’ a subset of the observed variables. When the data generating process can be represented by a directed acyclic graph, and this...
متن کاملOn Estimating Causal Effects based on Supplemental Variables
This paper considers the problem of estimating causal effects of a treatment on a response using supplementary variables. Under the assumption that a treatment is associated with a response through a univariate supplementary variable in the framework of linear regression models, Cox (1960) showed that the estimation accuracy of the regression coefficient of the treatment on the response in the ...
متن کاملEstimation of causal effects using linear non-Gaussian causal models with hidden variables
The task of estimating causal effects from non-experimental data is notoriously difficult and unreliable. Nevertheless, precisely such estimates are commonly required in many fields including economics and social science, where controlled experiments are often impossible. Linear causal models (structural equation models), combined with an implicit normality (Gaussianity) assumption on the data,...
متن کاملA comparison of algorithms for maximum likelihood estimation of Spatial GLM models
In spatial generalized linear mixed models, spatial correlation is assumed by adding normal latent variables to the model. In these models because of the non-Gaussian spatial response and the presence of latent variables the likelihood function cannot usually be given in a closed form, thus the maximum likelihood approach is very challenging. The main purpose of this paper is to introduce two n...
متن کامل