A Quadratic Approximation Method Based on Augmented Lagrangian Functions for Nonconvex Nonlinear Programming Problems

نویسنده

  • Andrzej P. Wierzbicki
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Augmented Lagrangian Based Algorithm for Distributed NonConvex Optimization

This paper is about distributed derivative-based algorithms for solving optimization problems with a separable (potentially nonconvex) objective function and coupled affine constraints. A parallelizable method is proposed that combines ideas from the fields of sequential quadratic programming and augmented Lagrangian algorithms. The method negotiates shared dual variables that may be interprete...

متن کامل

Augmented Lagrangian method for solving absolute value equation and its application in two-point boundary value problems

One of the most important topic that consider in recent years by researcher is absolute value equation (AVE). The absolute value equation seems to be a useful tool in optimization since it subsumes the linear complementarity problem and thus also linear programming and convex quadratic programming. This paper introduce a new method for solving absolute value equation. To do this, we transform a...

متن کامل

An Efficient Neurodynamic Scheme for Solving a Class of Nonconvex Nonlinear Optimization Problems

‎By p-power (or partial p-power) transformation‎, ‎the Lagrangian function in nonconvex optimization problem becomes locally convex‎. ‎In this paper‎, ‎we present a neural network based on an NCP function for solving the nonconvex optimization problem‎. An important feature of this neural network is the one-to-one correspondence between its equilibria and KKT points of the nonconvex optimizatio...

متن کامل

An augmented Lagrangian affine scaling method for nonlinear programming

In this paper, we propose an Augmented Lagrangian Affine Scaling (ALAS) algorithm for general nonlinear programming, for which a quadratic approximation to the augmented Lagrangian is minimized at each iteration. Different from the classical sequential quadratic programming (SQP), the linearization of nonlinear constraints is put into the penalty term of this quadratic approximation, which resu...

متن کامل

A Superlinearly Convergent Sequential Quadratically Constrained Quadratic Programming Algorithm for Degenerate Nonlinear Programming

We present an algorithm that achieves superlinear convergence for nonlinear programs satisfying the Mangasarian-Fromovitz constraint qualiication and the quadratic growth condition. This convergence result is obtained despite the potential lack of a locally convex augmented Lagrangian. The algorithm solves a succession of subproblems that have quadratic objective and quadratic constraints, both...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016