Double-critical graph conjecture for claw-free graphs

نویسندگان

  • Martin Rolek
  • Zi-Xia Song
چکیده

A connected graph G with chromatic number t is double-critical if G − x − y is (t − 2)-colorable for each edge xy ∈ E(G). The complete graphs are the only known examples of double-critical graphs. A long-standing conjecture of Erdős and Lovász from 1966, which is referred to as the Double-critical Graph Conjecture, states that there are no other double-critical graphs, i.e., if a graph G with chromatic number t is double-critical, then G = Kt. This has been verified for t ≤ 5, but remains open for t ≥ 6. In this paper, we first prove that if G is a non-complete double-critical graph with chromatic number t ≥ 6, then no vertex of degree t+ 1 is adjacent to a vertex of degree t+1, t+2 or t+3 in G. We then use this result to show that the Double-critical Graph Conjecture is true for double-critical graphs G with chromatic number t ≤ 8 if G is claw-free.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on the double-critical graph conjecture

A connected n-chromatic graph G is double-critical if for all the edges xy of G, the graph G−x−y is (n−2)-chromatic. In 1966, Erdős and Lovász conjectured that the only double-critical n-chromatic graph is Kn. This conjecture remains unresolved for n ≥ 6. In this short note, we verify this conjecture for claw-free graphs G of chromatic number 6.

متن کامل

An approximate version of Hadwiger's conjecture for claw-free graphs

Hadwiger’s conjecture states that every graph with chromatic number χ has a clique minor of size χ. In this paper we prove a weakened version of this conjecture for the class of claw-free graphs (graphs that do not have a vertex with three pairwise nonadjacent neighbors). Our main result is that a claw-free graph with chromatic number χ has a clique minor of size ⌈23χ⌉.

متن کامل

Claw-free graphs, skeletal graphs, and a stronger conjecture on $ω$, $Δ$, and $χ$

The second author’s ω, ∆, χ conjecture proposes that every graph satisties χ ≤ d 1 2 (∆ + 1 + ω)e. In this paper we prove that the conjecture holds for all claw-free graphs. Our approach uses the structure theorem of Chudnovsky and Seymour. Along the way we discuss a stronger local conjecture, and prove that it holds for claw-free graphs with a three-colourable complement. To prove our results ...

متن کامل

Circular Ones Matrices and the Stable Set Polytope of Quasi- ine Graphs

It is a long standing open problem to find an explicit description of the stable set polytope of claw-free graphs. Yet more than 20 years after the discovery of a polynomial algorithm for the maximum stable set problem for claw-free graphs, there is even no conjecture at hand today. Such a conjecture exists for the class of quasi-line graphs. This class of graphs is a proper superclass of line ...

متن کامل

On the Erdös-Lovász Tihany Conjecture for Claw-Free Graphs

In 1968, Erdös and Lovász conjectured that for every graph G and all integers s, t ≥ 2 such that s + t − 1 = χ(G) > ω(G), there exists a partition (S, T ) of the vertex set of G such that χ(G|S) ≥ s and χ(G|T ) ≥ t. For general graphs, the only settled cases of the conjecture are when s and t are small. Recently, the conjecture was proved for a few special classes of graphs: graphs with stabili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 340  شماره 

صفحات  -

تاریخ انتشار 2017