Plant SET domain-containing proteins: structure, function and regulation.
نویسندگان
چکیده
Modification of the histone proteins that form the core around which chromosomal DNA is looped has profound epigenetic effects on the accessibility of the associated DNA for transcription, replication and repair. The SET domain is now recognized as generally having methyltransferase activity targeted to specific lysine residues of histone H3 or H4. There is considerable sequence conservation within the SET domain and within its flanking regions. Previous reviews have shown that SET proteins from Arabidopsis and maize fall into five classes according to their sequence and domain architectures. These classes generally reflect specificity for a particular substrate. SET proteins from rice were found to fall into similar groupings, strengthening the merit of the approach taken. Two additional classes, VI and VII, were established that include proteins with truncated/interrupted SET domains. Diverse mechanisms are involved in shaping the function and regulation of SET proteins. These include protein-protein interactions through both intra- and inter-molecular associations that are important in plant developmental processes, such as flowering time control and embryogenesis. Alternative splicing that can result in the generation of two to several different transcript isoforms is now known to be widespread. An exciting and tantalizing question is whether, or how, this alternative splicing affects gene function. For example, it is conceivable that one isoform may debilitate methyltransferase function whereas the other may enhance it, providing an opportunity for differential regulation. The review concludes with the speculation that modulation of SET protein function is mediated by antisense or sense-antisense RNA.
منابع مشابه
In Silico Characterization of Proteins Containing ARID-PHD Domain and Its Expression in Aeluropus littoralis Halophyte
Abiotic stresses are the most important factors that reduce the yield of crops. In this case, Bioinformatics analysis plays an important role to study genes, and their relatedness as well as prediction their function in response to abiotic stresses. Among all domains, ARID-PHD domain has been identified in plants and animals and has a very significant role in growth regulation, cell cycle, and ...
متن کاملThe roles of EPIYA sequence to perturb the cellular signaling pathways and cancer risk
Abstract It was shown that several pathogenic bacterial effector proteins contain the Glu-Pro-Ile-Tyr-Ala (EPIYA) or a similar sequence. These bacterial EPIYA effectors are delivered into host cell via type III or IV secretion system, where they undergo tyrosine phosphorylation at the EPIYA sequences, which triggers interaction with multiple host cell SH2 domain-containing proteins and thereby...
متن کاملGenome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana.
Regulation of gene expression at the post-transcriptional level is mainly achieved by proteins containing well-defined sequence motifs involved in RNA binding. The most widely spread motifs are the RNA recognition motif (RRM) and the K homology (KH) domain. In this article, we survey the complete Arabidopsis thaliana genome for proteins containing RRM and KH RNA-binding domains. The Arabidopsis...
متن کاملEffects of T208E activating mutation on MARK2 protein structure and dynamics: Modeling and simulation
Microtubule Affinity-Regulating Kinase 2 (MARK2) protein has a substantial role in regulation of vital cellular processes like induction of polarity, regulation of cell junctions, cytoskeleton structure and cell differentiation. The abnormal function of this protein has been associated with a number of pathological conditions like Alzheimer disease, autism, several carcinomas and development of...
متن کاملFunctional Annotation of Two Hypothetical Proteins Reveals Valuable Proteins Involved in Response to Salinity: An in silico Approach
Through the exponential development in the specification of sequences and structures of proteins by genome sequencing and structural genomics approaches, there is a growing demand for valid bioinformatics methods to define these proteins function. In this study, our objective is to identify the function of unknown proteins from UCB-1 pistachio rootstock and specify their class...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1769 5-6 شماره
صفحات -
تاریخ انتشار 2007