Nonlinear Inexact Uzawa Algorithms for Linear and Nonlinear Saddle-point Problems

نویسندگان

  • Qiya Hu
  • Jun Zou
چکیده

This paper proposes some nonlinear Uzawa methods for solving linear and nonlinear saddle-point problems. A nonlinear inexact Uzawa algorithm is first introduced for linear saddlepoint problems. Two different PCG techniques are allowed in the inner and outer iterations of the algorithm. This algorithm is then extended for a class of nonlinear saddle-point problems arising from some convex optimization problems with linear constraints. For this extension, some PCG method used in the inner iteration needs to be carefully constructed so that it converges in a certain energy norm instead of the usual l2-norm. It is shown that the new algorithm converges under some practical conditions and there is no need for any a priori estimates on the minimal and maximal eigenvalues of the two local preconditioned systems involved. The two new methods perform more efficiently than the existing methods in the cases where no good preconditioners are available for the Schur complements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two new variants of nonlinear inexact Uzawa algorithms for saddle-point problems

In this paper, we consider some nonlinear inexact Uzawa methods for iteratively solving linear saddle-point problems. By means of a new technique, we first give an essential improvement on the convergence results of Bramble-Paschiak-Vassilev for a known nonlinear inexact Uzawa algorithm. Then we propose two new algorithms, which can be viewed as a combination of the known nonlinear inexact Uzaw...

متن کامل

Global and Superlinear Convergence of Inexact Uzawa Methods for Saddle Point Problems with Nondiierentiable Mappings

This paper investigates inexact Uzawa methods for nonlinear saddle point problems. We prove that the inexact Uzawa method converges globally and superlinearly even if the derivative of the nonlinear mapping does not exist. We show that the Newton-type decomposition method for saddle point problems is a special case of a Newton-Uzawa method. We discuss applications of inexact Uzawa methods to se...

متن کامل

Convergence Analysis of the Modified Nonlinear Inexact Uzawa Algorithm for Saddle Point Problem

This paper focuses on the convergence of the modified nonlinear inexact Uzawa algorithm (MNIU) for solving the saddle point problem. We improve the sufficient conditions for convergence and the convergence rate shown in Bramble et al. [J. Bramble, J. Pasciak, and A. Vassilev, Analysis of the inexact Uzawa algorithm for saddle point problems, SIAM J. Numer. Anal., 34 (1997), pp. 1072–1092] and Y...

متن کامل

On preconditioned Uzawa methods and SOR methods for saddle-point problems

This paper studies convergence analysis of a preconditioned inexact Uzawa method for nondi erentiable saddle-point problems. The SOR-Newton method and the SOR-BFGS method are special cases of this method. We relax the Bramble– Pasciak–Vassilev condition on preconditioners for convergence of the inexact Uzawa method for linear saddle-point problems. The relaxed condition is used to determine the...

متن کامل

A modified inexact Uzawa A lgorithm for generalized saddle point problems

In this note, we discuss the convergence behavior of a modified inexact Uzawa algorithm for solving generalized saddle point problems, which is an extension of the result obtained in a recent paper [Z.H. Cao, Fast Uzawa algorithm for generalized saddle point problems, Appl. Numer. Math., 46 (2003) 157-171]. Keywords—Saddle point problem; Inexact Uzawa algorithm; Convergence behavior.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2006