Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities
نویسندگان
چکیده
Exciton-polaritons form upon strong coupling between electronic excitations of a material and photonic states of a surrounding microcavity. In organic semiconductors the special nature of excited states leads to particularly strong coupling and facilitates condensation of exciton-polaritons at room temperature, which may lead to electrically pumped organic polariton lasers. However, charge carrier mobility and photo-stability in currently used materials is limited and exciton-polariton emission so far has been restricted to visible wavelengths. Here, we demonstrate strong light-matter coupling in the near infrared using single-walled carbon nanotubes (SWCNTs) in a polymer matrix and a planar metal-clad cavity. By exploiting the exceptional oscillator strength and sharp excitonic transition of (6,5) SWCNTs, we achieve large Rabi splitting (>110 meV), efficient polariton relaxation and narrow band emission (<15 meV). Given their high charge carrier mobility and excellent photostability, SWCNTs represent a promising new avenue towards practical exciton-polariton devices operating at telecommunication wavelengths.
منابع مشابه
Exciton polaritons in single and coupled microcavities
Recent work on strong coupling exciton}polariton phenomena in single and coupled microcavities is presented. We describe experiments for single cavities where the strong coupling nature of the excitations manifests itself. It is also shown that coupled cavities enable optically induced coupling between macroscopically separated exciton states to be achieved, and polaritons with strongly anisotr...
متن کاملPlasmonic Crystals for Strong Light–Matter Coupling in Carbon Nanotubes
Their high oscillator strength and large exciton binding energies make single-walled carbon nanotubes (SWCNTs) highly promising materials for the investigation of strong light-matter interactions in the near infrared and at room temperature. To explore their full potential, high-quality cavities-possibly with nanoscale field localization-are required. Here, we demonstrate the room temperature f...
متن کاملPeptide secondary structure modulates single-walled carbon nanotube fluorescence as a chaperone sensor for nitroaromatics.
A class of peptides from the bombolitin family, not previously identified for nitroaromatic recognition, allows near-infrared fluorescent single-walled carbon nanotubes to transduce specific changes in their conformation. In response to the binding of specific nitroaromatic species, such peptide-nanotube complexes form a virtual "chaperone sensor," which reports modulation of the peptide second...
متن کاملA novel label-free cocaine assay based on aptamer-wrapped single-walled carbon nanotubes
Objective(s): This paper describes a selective and sensitive biosensor based on the dissolution and aggregation of aptamer wrapped single-walled carbon nanotubes. We report on the direct detection of aptamer–cocaine interactions, namely between a DNA aptamer and cocaine molecules based on near-infrared absorption at λ807. Materials and Methods: First a DNA aptamer recognizing cocaine was non-co...
متن کاملSynthesis and characterization of functionalized single - walled carbon nanotube/ chitosan/polyaniline nanocomposite
In this work the synthesis of polyaniline/chitosan/functionalized single- walled carbon nanotube nanocomposite is carried out. For this purpose single -walled carbon nanotubes were reacted with thionyl chloride to change the hydroxyl to acyl chloride groups for improving the react ability. In other step, aniline monomers and chitosan were polymerized in the presence of Iron (III) chloride to sy...
متن کامل