Influence Maximization in Bandit and Adaptive Settings (DRAFT: August 27, 2015)
نویسنده
چکیده
The objective of viral marketing is to leverage a social network to spread awareness about a specific product in the market through information propagation via word-of-mouth. A closely related problem is that of influence maximization which aims to identify the ‘best’ set of ‘influential’ users (seeds) to give discounts or free products to, such that awareness about the product is maximized. We study two relatively unexplored variants of influence maximization (IM) in social networks. Conventional IM algorithms assume the structure of the social network and edge weights to be known. Though the structure of the network is usually known, edge weights need to be estimated from past data. In the first part of this thesis, we tackle the real but difficult problems of (i) learning these edge weights online and (ii) maximizing influence in the network when no past data is available as input. We adopt a combinatorial multiarmed bandit (CMAB) paradigm and formulate the above problems respectively as (i) network exploration, i.e. incrementally minimizing the error in learned edge weights and (ii) regret minimization i.e. minimizing the loss in influence from choosing suboptimal seed sets over multiple attempts. Most previous work on influence maximization in social networks is limited to the non-adaptive setting in which the marketer is supposed to select all of the seed users up front. A disadvantage of this setting is that she is forced to select all the seeds based solely on a diffusion model. If the selected seeds do not perform well, there is no opportunity to course-correct. A more practical setting is the adaptive setting in which the marketer initially selects a batch of users and observes how seeding those users leads to a diffusion of product adoptions. Based on this market feedback, she formulates a policy for choosing the remaining seeds. We study adaptive offline strategies for two problems: (a) MAXSPREAD given a budget on number of seeds and a time horizon, maximize the spread of influence and (b) MINTSS given a time horizon and an expected number of target users, minimize the number of required seeds.
منابع مشابه
Evolving Influence Maximization
Influence Maximization (IM) aims to maximize the number of people that become aware of a product by finding the ‘best’ set of ‘seed’ users to initiate the product advertisement. Unlike prior arts on static social networks containing fixed number of users, we undertake the first study of IM in more realistic evolving networks with temporally growing topology. The task of evolving IM (EIM), howev...
متن کاملInfluence Maximization with Bandits
We consider the problem of influence maximization in networks, maximizing the number of people that become aware of a product by finding the ‘best’ set of ‘seed’ users to expose the product to. Most prior work on this topic assumes that we know the probability of each user influencing each other user, or we have data that lets us estimate these influences. However, this information is typically...
متن کاملTighter Regret Bounds for Influence Maximization and Other Combinatorial Semi-Bandits with Probabilistically Triggered Arms
We study combinatorial multi-armed bandit with probabilistically triggered arms and semi-bandit feedback (CMAB-T). We resolve a serious issue in the prior CMAB-T studies where the regret bounds contain a possibly exponentially large factor of 1/p, where p is the minimum positive probability that an arm is triggered by any action. We address this issue by introducing a triggering probability mod...
متن کاملImproving Regret Bounds for Combinatorial Semi-Bandits with Probabilistically Triggered Arms and Its Applications
We study combinatorial multi-armed bandit with probabilistically triggered arms and semi-bandit feedback (CMAB-T). We resolve a serious issue in the prior CMAB-T studies where the regret bounds contain a possibly exponentially large factor of 1/p∗, where p∗ is the minimum positive probability that an arm is triggered by any action. We address this issue by introducing a triggering probability m...
متن کاملDiffusion Independent Semi-Bandit Influence Maximization
We consider influence maximization (IM) in social networks, which is the problem of maximizing the number of users that become aware of a product by selecting a set of “seed” users to expose the product to. While prior work assumes a known model of information diffusion, we propose a parametrization in terms of pairwise reachability which makes our framework agnostic to the underlying diffusion...
متن کامل