New Constraint Qualification and Conjugate Duality for Composed Convex Optimization Problems
نویسنده
چکیده
We present a new constraint qualification which guarantees strong duality between a cone-constrained convex optimization problem and its Fenchel-Lagrange dual. This result is applied to a convex optimization problem having, for a given nonempty convex cone K , as objective function a K-convex function postcomposed with a K-increasing convex function. For this so-called composed convex optimization problem, we present a strong duality assertion, too, under weaker conditions than the ones considered so far. As an application, we rediscover the formula of the conjugate of a postcomposition with a K-increasing convex function as valid under weaker conditions than usually used in the literature.
منابع مشابه
Conjugate duality for multiobjective composed optimization problems
Given a multiobjective optimization problem with the components of the objective function as well as the constraint functions being composed convex functions, we introduce, by using the Fenchel-Moreau conjugate of the functions involved, a suitable dual problem to it. Under a standard constraint qualification and some convexity as well as monotonicity conditions we prove the existence of strong...
متن کاملStrong Duality in Robust Convex Programming: Complete Characterizations
Abstract. Duality theory has played a key role in convex programming in the absence of data uncertainty. In this paper, we present a duality theory for convex programming problems in the face of data uncertainty via robust optimization. We characterize strong duality between the robust counterpart of an uncertain convex program and the optimistic counterpart of its uncertain Lagrangian dual. We...
متن کاملAn alternative formulation for a new closed cone constraint qualification
We give an alternative formulation for the so-called closed cone constraint qualification (CCCQ) related to a convex optimization problem in Banach spaces recently introduced in the literature. This new formulation allows to prove in a simple way that (CCCQ) is weaker than some generalized interiorpoint constraint qualifications given in the past. By means of some insights from the theory of co...
متن کاملSome Robust Convex Programs without a Duality Gap∗
In this paper, we examine the duality gap between the robust counterpart of a primal uncertain convex optimization problem and the optimistic counterpart of its uncertain Lagrangian dual and identify the classes of uncertain problems which do not have a duality gap. The absence of a duality gap (or equivalently zero duality gap) means that the primal worst value equals the dual best value. We f...
متن کاملOn Set Containment Characterization and Constraint Qualification for Quasiconvex Programming
Dual characterizations of the containment of a convex set with quasiconvex inequality constraints are investigated. A new Lagrange-type duality and a new closed cone constraint qualification are described, and it is shown that this constraint qualification is the weakest constraint qualification for the duality.
متن کامل