In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates.
نویسندگان
چکیده
Our ability to predict how global temperatures will change in the future is currently limited by the large uncertainties associated with aerosols. Soot aerosols represent a major research focus as they influence climate by absorbing incoming solar radiation resulting in a highly uncertain warming effect. The uncertainty stems from the fact that the actual amount soot warms our atmosphere strongly depends on the manner and degree in which it is mixed with other species, a property referred to as mixing state. In global models and inferences from atmospheric heating measurements, soot radiative forcing estimates currently differ by a factor of 6, ranging between 0.2-1.2 W/m(2), making soot second only to CO(2) in terms of global warming potential. This article reports coupled in situ measurements of the size-resolved mixing state, optical properties, and aging timescales for soot particles. Fresh fractal soot particles dominate the measured absorption during peak traffic periods (6-9 AM local time). Immediately after sunrise, soot particles begin to age by developing a coating of secondary species including sulfate, ammonium, organics, nitrate, and water. Based on these direct measurements, the core-shell arrangement results in a maximum absorption enhancement of 1.6x over fresh soot. These atmospheric observations help explain the larger values for soot forcing measured by others and will be used to obtain closure in optical property measurements to reduce one of the largest remaining uncertainties in climate change.
منابع مشابه
Relating aerosol absorption due to soot, organic carbon, and dust to emission sources determined from in-situ chemical measurements
Estimating the aerosol contribution to the global or regional radiative forcing can take advantage of the relationship between the spectral aerosol optical properties and the size and chemical composition of aerosol. Long term global optical measurements from observational networks or satellites can be used in such studies. Using in-situ chemical mixing state measurements can help us to constra...
متن کاملBlack carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom
Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its ...
متن کاملThe mass and number size distributions of black carbon aerosol over Europe
Black carbon-containing aerosol particles play an important role in the direct and indirect radiative forcing of climate. However, the magnitude and sign of the net radiative effect is strongly dependent on the physical properties of the black carbon (BC) component of the particles, such as mass concentration, number size distribution and mixing state. Here we use a global aerosol model combine...
متن کاملAerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling
The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar) radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001). Quantifying and reducing the uncertainty in aerosol influences on climate is critical to und...
متن کاملAerosol optical properties in a rural environment near the mega-city Guangzhou, China: implications for regional air pollution, radiative forcing and remote sensing
The scattering and absorption of solar radiation by atmospheric aerosols is a key element of the Earth’s radiative energy balance and climate. The optical properties of aerosol particles are, however, highly variable and not well characterized, especially near newly emerging mega-cities. In this study, aerosol optical properties were measured at a rural site approximately 60 km northwest of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 29 شماره
صفحات -
تاریخ انتشار 2009