New Quadrature Formulas from Conformal Maps

نویسندگان

  • Nicholas Hale
  • Lloyd N. Trefethen
چکیده

Gauss and Clenshaw–Curtis quadrature, like Legendre and Chebyshev spectral methods, make use of grids strongly clustered at boundaries. From the viewpoint of polynomial approximation this seems necessary and indeed in certain respects optimal. Nevertheless such methods may “waste” a factor of π/2 with respect to each space dimension. We propose new nonpolynomial quadrature methods that avoid this effect by conformally mapping the usual ellipse of convergence to an infinite strip or another approximately straight-sided domain. The new methods are compared with related ideas of Bakhvalov, Kosloff and Tal-Ezer, Rokhlin and Alpert, and others. An advantage of the conformal mapping approach is that it leads to theorems guaranteeing geometric rates of convergence for analytic integrands. For example, one of the formulas presented is proved to converge 50% faster than Gauss quadrature for functions analytic in an ε-neighborhood of [−1, 1].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New quadrature formulas from conformal maps by Nicholas Hale

Gauss and Clenshaw–Curtis quadrature, like Legendre and Chebyshev spectral methods, make use of grids strongly clustered at boundaries. From the viewpoint of polynomial approximation this seems necessary and indeed in certain respects optimal. Nevertheless such methods may “waste” a factor of π/2 with respect to each space dimension. We propose new nonpolynomial quadrature methods that avoid th...

متن کامل

Numerical Cubature from Archimedes' Hat-box Theorem

Archimedes’ hat-box theorem states that uniform measure on a sphere projects to uniform measure on an interval. This fact can be used to derive Simpson’s rule. We present various constructions of, and lower bounds for, numerical cubature formulas using moment maps as a generalization of Archimedes’ theorem. We realize some well-known cubature formulas on simplices as projections of spherical de...

متن کامل

Contour Integral Solution of Elliptic PDEs in Cylindrical Domains

The solutions of certain elliptic PDEs can be expressed as contour integrals of Dunford type. In this paper efficient contours and quadrature rules for the approximation of such integrals are proposed. The trapezoidal and midpoint rules are used in combination with a conformal mapping that fully exploits the analyticity of the integrand, leading to rapidly converging quadrature formulas of doub...

متن کامل

Optimal Quadrature Formulas with Derivative in the Space

Abstract This paper studies the problem of construction of optimal quadrature formulas in the sense of Sard in the space ( ) 2 (0,1) m L . In this paper the quadrature sum consists of values of the integrand and its first derivative at nodes. The coefficients of optimal quadrature formulas are found and the norm of the optimal error functional is calculated for arbitrary natural number 1 N m ≥ ...

متن کامل

Several New Quadrature Formulas for Polynomial Integration in the Triangle

We present several new quadrature formulas in the triangle for exact integrationof polynomials. The points were computed numerically with a cardinal function algorithm whichimposes that the number of quadrature points N be equal to the dimension of a lower dimensionalpolynomial space. Quadrature forumulas are presented for up to degree d = 25, all which havepositive weights and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2008