Convergence Properties of (μ + λ) Evolutionary Algorithms

نویسندگان

  • Aram Ter-Sarkisov
  • Stephen R. Marsland
چکیده

Introduction Evolutionary Algorithms (EA) are a branch of heuristic population-based optimization tools that is growing in popularity (especially for combinatorial and other problems with poorly understood landscapes). Despite their many uses, there are no proofs that an EA will always converge to the global optimum for any general problem. Indeed, only for a set of trivial functions there are any proofs at all.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence Properties of Two (μ+λ) Evolutionary Algorithms on OneMax and Royal Roads Test Functions

We present a number of bounds on convergence time for two elitist population-based Evolutionary Algorithms using a recombination operator k-Bit-Swap and a mainstream Randomized Local Search algorithm. We study the effect of distribution of elite species and population size.

متن کامل

Parameterized Runtime Analyses of Evolutionary Algorithms for the Euclidean Traveling Salesperson Problem

Parameterized runtime analysis seeks to understand the influence of problem structure on algorithmic runtime. In this paper, we contribute to the theoretical understanding of evolutionary algorithms and carry out a parameterized analysis of evolutionary algorithms for the Euclidean traveling salesperson problem (Euclidean TSP). We investigate the structural properties in TSP instances that infl...

متن کامل

Convergence of Hypervolume-Based Archiving Algorithms II: Competetiveness

We study the convergence behavior of (μ + λ)-archiving algorithms. A (μ + λ)-archiving algorithm defines how to choose in each generation μ children from μ parents and λ offspring together. Archiving algorithms have to choose individuals online without knowing future offspring. Previous studies assumed the offspring generation to be best-case. We assume the initial population and the offspring ...

متن کامل

Convergence Analysis of Evolution Strategies with Random Numbers of Offspring

Abstract. Hitting times of the global optimum for evolutionary algorithms are usually available for simple unimodal problems or for simplied algorithms. In discrete problems, the number of results that relate the convergence rate of evolution strategies to the geometry of the optimisation landscape is restricted to a few theoretical studies. This article introduces a variant of the canonical (μ...

متن کامل

Convergence analysis of a self-adaptive multi-objective evolutionary algorithm based on grids

Evolutionary algorithms have been successfully applied to various multi-objective optimization problems. However, theoretical studies on multi-objective evolutionary algorithms, especially with self-adaption, are relatively scarce. This paper analyzes the convergence properties of a self-adaptive (μ+1)-algorithm. The convergence of the algorithm is defined, and the general convergence condition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011