Reconstructions for some coupled-physics inverse problems

نویسندگان

  • Guillaume Bal
  • Gunther Uhlmann
چکیده

This letter announces and summarizes results obtained in [8] and considers several natural extensions. The aforementioned paper proposes a procedure to reconstruct coefficients in a second-order, scalar, elliptic equation from knowledge of a sufficiently large number of its solutions. We present this derivation and extend it to show which parameters may or may not be reconstructed for several hybrid (also called coupled physics) imaging modalities including photo-acoustic tomography, thermo-acoustic tomography, transient elastography, and magnetic resonance elastography. Stability estimates are also proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A STABLE COUPLED NEWTON'S ITERATION FOR THE MATRIX INVERSE $P$-TH ROOT

The computation of the inverse roots of matrices arises in evaluating non-symmetriceigenvalue problems, solving nonlinear matrix equations, computing some matrixfunctions, control theory and several other areas of applications. It is possible toapproximate the matrix inverse pth roots by exploiting a specialized version of New-ton's method, but previous researchers have mentioned that some iter...

متن کامل

The B"{a}cklund transformation method of Riccati equation to coupled Higgs field and Hamiltonian amplitude equations

In this paper, we establish new exact solutions for some complex nonlinear wave equations. The B"{a}cklund transformation method of Riccati equation is used to construct exact solutions of the Hamiltonian amplitude equation and the coupled Higgs field equation. This method presents a wide applicability to handling nonlinear wave equations. These equations play a very important role in mathemati...

متن کامل

A Note on Sparse Reconstruction Methods

In this paper we discuss some aspects of sparse reconstruction techniques for inverse problems, which recently became popular due to several superior properties compared to linear reconstructions. We briefly review the standard sparse reconstructions based on `-minimization of coefficients with respect to an orthonormal basis, and also some recently proposed improvements based on Bregman iterat...

متن کامل

Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations

  In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...

متن کامل

Inverse transport problems in quantitative PAT for molecular imaging

Fluorescence photoacoustic tomography (fPAT) is a molecular imaging modality that combines photoacoustic tomography (PAT) with fluorescence imaging to obtain high-resolution imaging of fluorescence distributions inside heterogeneous media. The objective of this work is to study inverse problems in the quantitative step of fPAT where we intend to reconstruct physical coefficients in a coupled sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Math. Lett.

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2012