Biochemical isolation of myonuclei employed to define changes to the myonuclear proteome that occur with aging
نویسندگان
چکیده
Skeletal muscle aging is accompanied by loss of muscle mass and strength. Examining changes in myonuclear proteins with age would provide insight into molecular processes which regulate these profound changes in muscle physiology. However, muscle tissue is highly adapted for contraction and thus comprised largely of contractile proteins making the nuclear proteins difficult to identify from whole muscle samples. By developing a method to purify myonuclei from whole skeletal muscle, we were able to collect myonuclei for analysis by flow cytometry, biochemistry, and mass spectrometry. Nuclear purification dramatically increased the number and intensity of nuclear proteins detected by mass spectrometry compared to whole tissue. We exploited this increased proteomic depth to investigate age-related changes to the myonuclear proteome. Nuclear levels of 54 of 779 identified proteins (7%) changed significantly with age; these proteins were primarily involved in chromatin maintenance and RNA processing. To determine whether the changes we detected were specific to myonuclei or were common to nuclei of excitatory tissues, we compared aging in myonuclei to aging in brain nuclei. Although several of the same processes were affected by aging in both brain and muscle nuclei, the specific proteins involved in these alterations differed between the two tissues. Isolating myonuclei allowed a deeper view into the myonuclear proteome than previously possible facilitating identification of novel age-related changes in skeletal muscle. Our technique will enable future studies into a heretofore underrepresented compartment of skeletal muscle.
منابع مشابه
Is the myonuclear domain size fixed?
It has been suggested that the number of myonuclei in a muscle fibre changes in proportion to the change in fibre size, resulting in a constant myonuclear domain size, defined as the cytoplasmic volume per myonucleus. The myonuclear domain size varies, however, between fibre types and is inversely related with the oxidative capacity of a fibre. Overall, the observations of an increase in myonuc...
متن کاملMyonuclear domain size varies along the lengths of maturing skeletal muscle fibers.
In a skeletal muscle fiber, each myonucleus is responsible for gene expression in its surrounding cytoplasm. The region of cytoplasm associated with an individual myonucleus is termed myonuclear domain. However, little is known about domain size variation within individual muscle fibers. This study tests the hypothesis that myonuclear domains expressing neonatal myosin within end regions of mat...
متن کاملDevelopmental effects on myonuclear domain size of rat diaphragm fibers.
During early postnatal development in rat diaphragm muscle (Diam), significant fiber growth and transitions in myosin heavy chain (MHC) isoform expression occur. Similar to other skeletal muscles, Diam fibers are multinucleated, and each myonucleus regulates the gene products within a finite volume: the myonuclear domain (MND). We hypothesized that postnatal changes in fiber cross-sectional are...
متن کاملPresence and Nature of “ Tau ” Immunoreactivity in Normal Myonuclei and Inclusion Body Myositis
Introduction It has been widely stated that sarcoplasmic accumulation of phosphorylated forms of the microtubule associated protein tau (MAPT) occurs in and contributes to the pathogenesis of the muscle disease in inclusion body myositis (IBM). The goal of our study was to further explore the extent and nature of reactivity against “tau” antibodies in normal and diseased human muscle. Methods M...
متن کاملTime-course of changes in the myonuclear domain during denervation in young-adult and old rat gastrocnemius muscle.
If myonuclear loss initiates muscle wasting, it should precede the loss of muscle mass. As aging affects muscle plasticity, the time-course of muscle atrophy during disuse may differ between young and old animals. To investigate this, gastrocnemius muscles of 5- and 25-month-old rats were exposed to 1, 2, or 4 weeks of denervation, whereas the contralateral gastrocnemius muscles served as contr...
متن کامل