Brick tabloids and the connection matrices between bases of symmetric functions

نویسندگان

  • Ömer Egecioglu
  • Jeffrey B. Remmel
چکیده

Egecioglu, ii. and J.B. Remmel, Brick tabloids and the connection matrices between bases of symmetric functions, Discrete Applied Mathematics 34 (1991) 107-120. Let H, denote the space of symmetric functions, homogeneous of degree n. In this paper we introduce a new set of combinatorial objects called I-brick tabloids and its variants, which we use *to give combinatorial interpretations of the entries for twelve of the transition matrices between natural bases of H,. Using these interpretations, it is possible to give purely combinatorial proofs of various identities between these connection matrices. Also as a consequence, the so called forgotten basis of Doubilet and Rota is shown to admit a natural combinatorial description in terms of brick tabloids and the monomial symmetric functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A combinatorial interpretation of the inverse t-Kostka matrix

In this paper we use tournament matrices to give a combinatorial interpretation for the entries of the inverse t-Kostka matrix, which is the transition matrix between the Hall-Littlewood polyno-mials and the Schur functions. 0.1 Introduction In the rst section of this paper we introduce some basic notation about tournament matrices, and prove a theorem that is crucial in the second section. In ...

متن کامل

The exponential functions of central-symmetric $X$-form matrices

It is well known that the matrix exponential function has practical applications in engineering and applied sciences. In this paper, we present some new explicit identities to the exponential functions of a special class of matrices that are known as central-symmetric $X$-form. For instance, $e^{mathbf{A}t}$, $t^{mathbf{A}}$ and $a^{mathbf{A}t}$ will be evaluated by the new formulas in this par...

متن کامل

Generalized matrix functions, determinant and permanent

In this paper, using permutation matrices or symmetric matrices, necessary and sufficient conditions are given for a generalized matrix function to be the determinant or the permanent. We prove that a generalized matrix function is the determinant or the permanent if and only if it preserves the product of symmetric permutation matrices. Also we show that a generalized matrix function is the de...

متن کامل

Lyndon Words and Transition Matrices between Elementary, Homogeneous and Monomial Symmetric Functions

Let hλ, eλ, and mλ denote the homogeneous symmetric function, the elementary symmetric function and the monomial symmetric function associated with the partition λ respectively. We give combinatorial interpretations for the coefficients that arise in expanding mλ in terms of homogeneous symmetric functions and the elementary symmetric functions. Such coefficients are interpreted in terms of cer...

متن کامل

ON THE FUNCTION OF BLOCK ANTI DIAGONAL MATRICES AND ITS APPLICATION

The matrix functions appear in several applications in engineering and sciences. The computation of these functions almost involved complicated theory. Thus, improving the concept theoretically seems unavoidable to obtain some new relations and algorithms for evaluating these functions. The aim of this paper is proposing some new reciprocal for the function of block anti diagonal matrices. More...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 34  شماره 

صفحات  -

تاریخ انتشار 1991