CCM proteins control endothelial β1 integrin dependent response to shear stress
نویسندگان
چکیده
Hemodynamic shear stress from blood flow on the endothelium critically regulates vascular function in many physiological and pathological situations. Endothelial cells adapt to shear stress by remodeling their cytoskeletal components and subsequently by changing their shape and orientation. We demonstrate that β1 integrin activation is critically controlled during the mechanoresponse of endothelial cells to shear stress. Indeed, we show that overexpression of the CCM complex, an inhibitor of β1 integrin activation, blocks endothelial actin rearrangement and cell reorientation in response to shear stress similarly to β1 integrin silencing. Conversely, depletion of CCM2 protein leads to an elongated "shear-stress-like" phenotype even in the absence of flow. Taken together, our findings reveal the existence of a balance between positive extracellular and negative intracellular signals, i.e. shear stress and CCM complex, for the control of β1 integrin activation and subsequent adaptation of vascular endothelial cells to mechanostimulation by fluid shear stress.
منابع مشابه
Effect of progressive resistance exercise on β1 integrin and vinculin protein levels in slow-and fast-twitch skeletal muscles of male rats
Introduction: Skeletal muscle is a flexible and ever changing tissue and the role of costameric proteins in its response to different stimuli is not well defined. The aim of this study was to investigate the effect of progressive resistance exercise on β1 integrin and vinculin proteins in fast and slow twitch skeletal muscles of male rats. Methods: Twelve male Wistar rats (weight: 298±5.2 gr...
متن کاملCCM1–ICAP-1 complex controls β1 integrin–dependent endothelial contractility and fibronectin remodeling
The endothelial CCM complex regulates blood vessel stability and permeability. Loss-of-function mutations in CCM genes are responsible for human cerebral cavernous malformations (CCMs), which are characterized by clusters of hemorrhagic dilated capillaries composed of endothelium lacking mural cells and altered sub-endothelial extracellular matrix (ECM). Association of the CCM1/2 complex with I...
متن کاملp190 RhoGTPase-activating protein links the β1 integrin/caveolin-1 mechanosignaling complex to RhoA and actin remodeling.
OBJECTIVE To determine whether the β1 integrin/caveolin-1 signaling complex plays a role in shear stress regulation of RhoA activity . METHODS AND RESULTS Hemodynamic shear stress influences the phenotype of the endothelium. Integrins and RhoA are essential components in the process that allows endothelial cells to adapt to flow. However, the signaling mechanisms that relay from integrins to ...
متن کاملShear Stress Regulates Late EPC Differentiation via Mechanosensitive Molecule-Mediated Cytoskeletal Rearrangement
BACKGROUND Previous studies have demonstrated that endothelial progenitor cells (EPCs), in particular late EPCs, play important roles in endothelial maintenance and repair. Recent evidence has revealed shear stress as a key regulator for EPC differentiation. However, the underlying mechanisms regulating the shear stress-induced EPC differentiation have not been understood completely. The presen...
متن کاملEndothelial basement membrane laminin 511 is essential for shear stress response
Shear detection and mechanotransduction by arterial endothelium requires junctional complexes containing PECAM-1 and VE-cadherin, as well as firm anchorage to the underlying basement membrane. While considerable information is available for junctional complexes in these processes, gained largely from in vitro studies, little is known about the contribution of the endothelial basement membrane. ...
متن کامل