Feeder & basic fibroblast growth factor-free culture of human embryonic stem cells: Role of conditioned medium from immortalized human feeders

نویسندگان

  • Pooja Teotia
  • Shilpa Sharma
  • Balram Airan
  • Sujata Mohanty
چکیده

BACKGROUND & OBJECTIVES Human embryonic stem cell (hESC) lines are commonly maintained on inactivated feeder cells, in the medium supplemented with basic fibroblast growth factor (bFGF). However, limited availability of feeder cells in culture, and the high cost of growth factors limit their use in scalable expansion of hESC cultures for clinical application. Here, we describe an efficient and cost-effective feeder and bFGF-free culture of hESCs using conditioned medium (CM) from immortalized feeder cells. METHODS KIND-1 hESC cell line was cultured in CM, collected from primary mouse embryonic fibroblast, human foreskin fibroblast (HFF) and immortalized HFF (I-HFF). Pluripotency of KIND-1 hESC cell line was confirmed by expression of genes, proteins and cell surface markers. RESULTS In culture, these cells retained normal morphology, expressed all cell surface markers, could differentiate to embryoid bodies upon culture in vitro. Furthermore, I-HFF feeder cells without supplementation of bFGF released ample amount of endogenous bFGF to maintain stemness of hESC cells. INTERPRETATION & CONCLUSIONS The study results described the use of CM from immortalized feeder cells as a consistent source and an efficient, inexpensive feeder-free culture system for the maintenance of hESCs. Moreover, it was possible to maintain hESCs without exogenous supplementation of bFGF. Thus, the study could be extended to scalable expansion of hESC cultures for therapeutic purposes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Fetal Liver Stromal Cells That Overexpress bFGF Support Growth and Maintenance of Human Embryonic Stem Cells

In guiding hES cell technology toward the clinic, one key issue to be addressed is to culture and maintain hES cells much more safely and economically in large scale. In order to avoid using mouse embryonic fibroblasts (MEFs) we isolated human fetal liver stromal cells (hFLSCs) from 14 weeks human fetal liver as new human feeder cells. hFLSCs feeders could maintain hES cells for 15 passages (ab...

متن کامل

Human feeder layers for human embryonic stem cells.

Human embryonic stem (hES) cells hold great promise for future use in various research areas, such as human developmental biology and cell-based therapies. Traditionally, these cells have been cultured on mouse embryonic fibroblast (MEF) feeder layers, which permit continuous growth in an undifferentiated stage. To use these unique cells in human therapy, an animal-free culture system must be u...

متن کامل

Cryopreserving and recovering of human iPS cells using complete Knockout Serum Replacement feeder-free medium.

The discovery in 2006 that human and mouse fibroblasts could be reprogrammed to generate iPS cells with qualities remarkably similar to embryonic stem cells has created a valuable new source of pluripotent cells for drug discovery, cell therapy, and basic research. GIBCO media and reagents have been at the forefront of pluripotent stem cell research for years. Knockout DMEM supplemented with Kn...

متن کامل

Maintenance of horse embryonic stem cells in different conditions

Embryonic stem cells (ESCs) are originally derived from the ICM of blastocysts and are characterized by their ability to self-renew and their pluripotencies. Only a few reports have been published on ESC isolations and line establishment in animals, even fewer in horses. However, it is still important to isolate equine ESCs for animal biotechnology and therapeutic applications. In the present s...

متن کامل

Undifferentiated propagation of the human embryonic stem cell lines, H1 and HSF6, on human placenta-derived feeder cells without basic fibroblast growth factor supplementation.

In order for human embryonic stem cells (hESCs) to be cultured on mouse embryonic fibroblast (MEFs) feeder cells, continuous basic fibroblast growth factor (bFGF) supplementation is required. However, the role of bFGF in a culture system using human-derived feeder cells has not been evaluated until now. In this study, we propagated the widely used hESC lines, H1 and HSF6, on human placenta-deri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 144  شماره 

صفحات  -

تاریخ انتشار 2016