Nonparametric Bayesian sparse factor models with application to gene expression modeling
نویسندگان
چکیده
A nonparametric Bayesian extension of Factor Analysis (FA) is proposed where observed data Y is modeled as a linear superposition, G, of a potentially infinite number of hidden factors, X. The Indian Buffet Process (IBP) is used as a prior on G to incorporate sparsity and to allow the number of latent features to be inferred. The model’s utility for modeling gene expression data is investigated using randomly generated data sets based on a known sparse connectivity matrix for E. Coli, and on three biological data sets of increasing complexity.
منابع مشابه
Nonparametric Bayesian Sparse Factor Models with application to Gene Expression modelling
A nonparametric Bayesian extension of Factor Analysis (FA) is proposed where observed data Y is modeled as a linear superposition, G, of a potentially infinite number of hidden factors, X. The Indian Buffet Process (IBP) is used as a prior on G to incorporate sparsity and to allow the number of latent features to be inferred. The model’s utility for modeling gene expression data is investigated...
متن کاملNon-parametric Bayesian Hierarchical Factor Modeling and Regression
We address the problem of sparse Bayesian factor regression from high-dimensional gene-expression data where the number and inter-relationship of factors is not known apriori. We take a non-parametric Bayesian approach based on a variant of the Indian Buffet Process [1]. This leads to an interpretable model for gene-pathway relationships, a simple inference procedure, and allows us to consider ...
متن کاملApplication of Gene Expression Programming and Support Vector Regression models to Modeling and Prediction Monthly precipitation
Estimating and predicting precipitation and achieving its runoff play an important role to correct management and exploitation of basins, management of dams and reservoirs, minimizing the flood damages and droughts, and water resource management, so they are considered by hydrologists. The appropriate performance of intelligent models leads researchers to use them for predicting hydrological ph...
متن کاملModels of Random Sparse Eigenmatrices with Application to Bayesian Factor Analysis
We discuss a new class of models for random covariance structures defined by probability distributions over sparse eigenmatrices. The decomposition of orthogonal square matrices in terms of Givens rotations defines a natural, interpretable framework for defining prior distributions over the sparsity structure of random eigenmatrices. We explore some theoretical aspects and implications for cond...
متن کاملSpiked Dirichlet Process Prior for Bayesian Multiple Hypothesis Testing in Random Effects Models.
We propose a Bayesian method for multiple hypothesis testing in random effects models that uses Dirichlet process (DP) priors for a nonparametric treatment of the random effects distribution. We consider a general model formulation which accommodates a variety of multiple treatment conditions. A key feature of our method is the use of a product of spiked distributions, i.e., mixtures of a point...
متن کامل