Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation.

نویسندگان

  • Agnieszka A Kendrick
  • Mahua Choudhury
  • Shaikh M Rahman
  • Carrie E McCurdy
  • Marisa Friederich
  • Johan L K Van Hove
  • Peter A Watson
  • Nicholas Birdsey
  • Jianjun Bao
  • David Gius
  • Michael N Sack
  • Enxuan Jing
  • C Ronald Kahn
  • Jacob E Friedman
  • Karen R Jonscher
چکیده

Acetylation has recently emerged as an important mechanism for controlling a broad array of proteins mediating cellular adaptation to metabolic fuels. Acetylation is governed, in part, by SIRTs (sirtuins), class III NAD(+)-dependent deacetylases that regulate lipid and glucose metabolism in liver during fasting and aging. However, the role of acetylation or SIRTs in pathogenic hepatic fuel metabolism under nutrient excess is unknown. In the present study, we isolated acetylated proteins from total liver proteome and observed 193 preferentially acetylated proteins in mice fed on an HFD (high-fat diet) compared with controls, including 11 proteins not previously identified in acetylation studies. Exposure to the HFD led to hyperacetylation of proteins involved in gluconeogenesis, mitochondrial oxidative metabolism, methionine metabolism, liver injury and the ER (endoplasmic reticulum) stress response. Livers of mice fed on the HFD had reduced SIRT3 activity, a 3-fold decrease in hepatic NAD(+) levels and increased mitochondrial protein oxidation. In contrast, neither SIRT1 nor histone acetyltransferase activities were altered, implicating SIRT3 as a dominant factor contributing to the observed phenotype. In Sirt3⁻(/)⁻ mice, exposure to the HFD further increased the acetylation status of liver proteins and reduced the activity of respiratory complexes III and IV. This is the first study to identify acetylation patterns in liver proteins of HFD-fed mice. Our results suggest that SIRT3 is an integral regulator of mitochondrial function and its depletion results in hyperacetylation of critical mitochondrial proteins that protect against hepatic lipotoxicity under conditions of nutrient excess.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced mitochondrial function in obesity-associated fatty liver: SIRT3 takes on the fat

Aging is associated with various metabolic disorders that may have their origin in the liver, including non-alcoholic fatty liver disease, obesity, type 2 diabetes mellitus, and atherosclerosis. Although well-characterized in models of caloric restriction, relatively little is known about the role of sirtuins and acetylation under conditions of caloric excess. Sirtuins are NAD (+)-dependent pro...

متن کامل

SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation

Sirtuins are NAD-dependent protein deacetylases. They mediate adaptive responses to a variety of stresses, including calorie restriction and metabolic stress. Sirtuin 3 (SIRT3) is localized in the mitochondrial matrix, where it regulates the acetylation levels of metabolic enzymes, including acetyl coenzyme A synthetase 2 (refs 1, 2). Mice lacking both Sirt3 alleles appear phenotypically normal...

متن کامل

The Effect of Interval training and Omega 3 on Mitochondrial Biogenesis in the liver Tissue of Nonalcoholic fatty liver disease (NAFLD) Rats

Background: Non-alcoholic fatty liver disease (NAFLD) is an important cause of chronic liver disease worldwide. Mitochondrial dysfunction has been proven to be closely associated with NAFLD. The aim of this study is to investigate the effect of interval exercise and omega-3 on mitochondrial biogenesis in liver tissues of NAFLD rats. Materials and Methods: In this experimental study, 40 male Wis...

متن کامل

Sirt3 Regulates Metabolic Flexibility of Skeletal Muscle Through Reversible Enzymatic Deacetylation

Sirt3 is an NAD(+)-dependent deacetylase that regulates mitochondrial function by targeting metabolic enzymes and proteins. In fasting mice, Sirt3 expression is decreased in skeletal muscle resulting in increased mitochondrial protein acetylation. Deletion of Sirt3 led to impaired glucose oxidation in muscle, which was associated with decreased pyruvate dehydrogenase (PDH) activity, accumulatio...

متن کامل

SIRT3 weighs heavily in the metabolic balance: a new role for SIRT3 in metabolic syndrome.

Eating a "Western diet" high in fat and sugars is associated with accelerated development of age-related metabolic diseases such as obesity, insulin resistance, and diabetes while incidences of these diseases are decreased on a low-calorie diet. The mitochondrial NAD(+)-dependent protein deacetylase SIRT3 has previously been shown to be important in adapting to metabolic stress brought on by fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 433 3  شماره 

صفحات  -

تاریخ انتشار 2011