Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period

نویسندگان

  • L. Kaleschke
  • X. Tian-Kunze
  • N. Maaß
  • M. Mäkynen
  • M. Drusch
چکیده

[1] The Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) on board the European Space Agency’s (ESA) Soil Moisture and Ocean Salinity (SMOS) mission for the first time measures globally Earth’s radiation at a frequency of 1.4 GHz (L-band). It had been hypothesized that L-band radiometry can be used to measure the sea ice thickness due to the large penetration depth in the sea ice medium. We demonstrate the potential of SMOS to derive the thickness of thin sea ice for the Arctic freeze-up period using a novel retrieval algorithm based on Level 1C brightness temperatures. The SMOS ice thickness product is compared with an ice growth model and independent sea ice thickness estimates from MODIS thermal infrared imagery. The ice thickness derived from SMOS is highly consistent with the temporal development of the growth simulation and agrees with the ice thickness from MODIS images with 10 cm standard deviation. The results confirm that SMOS can be used to retrieve sea ice thickness up to half a meter under ideal cold conditions with surface air temperatures below 10°C and highconcentration sea ice coverage. Citation: Kaleschke, L., X. Tian-Kunze, N. Maaß, M. Mäkynen, and M. Drusch (2012), Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period, Geophys. Res. Lett., 39, L05501, doi:10.1029/2012GL050916.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Empirical sea ice thickness retrieval during the freeze-up period from SMOS high incident angle observations

Sea ice thickness information is important for sea ice modelling and ship operations. Here a method to detect the thickness of sea ice up to 50 cm during the freeze-up season based on high incidence angle observations of the Soil Moisture and Ocean Salinity (SMOS) satellite working at 1.4 GHz is suggested. By comparison of thermodynamic ice growth data with SMOS brightness temperatures, a high ...

متن کامل

Snow thickness retrieval over thick Arctic sea ice using SMOS satellite data

The microwave interferometric radiometer of the European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) mission measures at a frequency of 1.4 GHz in the L-band. In contrast to other microwave satellites, low frequency measurements in L-band have a large penetration depth in sea ice and thus contain information on the ice thickness. Previous ice thickness retrievals have neglected a sno...

متن کامل

A sea-ice thickness retrieval model for 1.4 GHz radiometry and application to airborne measurements over low salinity sea-ice

In preparation for the European Space Agency’s (ESA) Soil Moisture and Ocean Salinity (SMOS) mission, we investigated the potential of L-band (1.4 GHz) radiometry to measure sea-ice thickness. Sea-ice brightness temperature was measured at 1.4 GHz and ice thickness was measured along nearly coincident flight tracks during the SMOS Sea-Ice campaign in the Bay of Bothnia in March 2007. A research...

متن کامل

Comparison of Arctic Sea Ice Thickness from Satellites, Aircraft, and PIOMAS Data

In this study, six Arctic sea ice thickness products are compared: the AVHRR Polar Pathfinder-extended (APP-x), ICESat, CryoSat-2, SMOS, NASA IceBridge aircraft flights, and the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS). The satellite products are based on three different retrieval methods: an energy budget approach, measurements of ice freeboard, and the relationship betwe...

متن کامل

On the accuracy of thin-ice thickness retrieval using MODIS thermal imagery over Arctic first-year ice

We have studied the accuracy of ice thickness (hi) retrieval based on night-time MODIS (Moderate Resolution Imaging Spectroradiometer) ice surface temperature (Ts) images and HIRLAM (High Resolution Limited Area Model) weather forcing data from the Arctic. The study area is the Kara Sea and eastern part of the Barents Sea, and the study period spans November–April 2008–11 with 199 hi charts. Fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012