Increases in Mitochondrial DNA Content and 4977-bp Deletion upon ATM/Chk2 Checkpoint Activation in HeLa Cells

نویسندگان

  • Rong Niu
  • Minoru Yoshida
  • Feng Ling
چکیده

Activation of the Mec1/Rad53 damage checkpoint pathway influences mitochondrial DNA (mtDNA) content and point mutagenesis in Saccharomyces cerevisiae. The effects of this conserved checkpoint pathway on mitochondrial genomes in human cells remain largely unknown. Here, we report that knockdown of the human DNA helicase RRM3 enhances phosphorylation of the cell cycle arrest kinase Chk2, indicating activation of the checkpoint via the ATM/Chk2 pathway, and increases mtDNA content independently of TFAM, a regulator of mtDNA copy number. Cell-cycle arrest did not have a consistent effect on mtDNA level: knockdown of cell cycle regulators PLK1 (polo-like kinase), MCM2, or MCM3 gave rise, respectively, to decreased, increased, or almost unchanged mtDNA levels. Therefore, we concluded that the mtDNA content increase upon RRM3 knockdown is not a response to delay of cell cycle progression. Also, we observed that RRM3 knockdown increased the levels of reactive oxygen species (ROS); two ROS scavengers, N-acetyl cysteine and vitamin C, suppressed the mtDNA content increase. On the other hand, in RRM3 knockdown cells, we detected an increase in the frequency of the common 4977-bp mtDNA deletion, a major mtDNA deletion that can be induced by abnormal ROS generation, and is associated with a decline in mitochondrial genome integrity, aging, and various mtDNA-related disorders in humans. These results suggest that increase of the mitochondrial genome by TFAM-independent mtDNA replication is connected, via oxidative stress, with the ATM/Chk2 checkpoint activation in response to DNA damage, and is accompanied by generation of the common 4977-bp deletion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Mitochondrial DNA 4977-bp Deletion in Patients with Colorectal Cancer: a Case-control Study in Iran

Colorectal cancer (CRC) is the third leading cause of cancer-related death worldwide, and its occurrence can be ascribed to genetic susceptibility. Mitochondrial DNA 4977-bp (mtDNA 4977), as the most described mtDNA deletion, has been long proposed to be involved in various types of cancers. However, a few studies on mtDNA 4977-bp deletion in Iranian patients with CRC have been reported. The cu...

متن کامل

The Role of chk2 in Response to DNA Damage in Cancer Cells

Accumulation of gene changes and chromosomal instability in response to cellular DNA damage lead to cancer. DNA damage induces cell cycle checkpoints pathways. Checkpoints regulate DNA replication and cell cycle progression, chromatin restructuring, and apoptosis. Checkpoint kinase 2 (chk2) is activated in response to DNA lesions. ATM phosphorylate chk2. The activated Chk2 kinase can phosphoryl...

متن کامل

Mitochondrial DNA 4977 bp deletion is a common phenomenon in hair and increases with age.

Mitochondrial DNA (mtDNA) is believed to be particularly susceptible to oxidative damage during aging, resulting in mtDNA point mutations, duplications, and deletions. Although mtDNA deletions have been reported in various human tissues, e.g., the brain, heart, and skeletal muscle, little is known about the occurrence in hair. Therefore, we screened for the presence of mtDNA 13162 bp, 10422 bp,...

متن کامل

Dual induction of apoptosis and senescence in cancer cells by Chk2 activation: checkpoint activation as a strategy against cancer.

The human checkpoint kinase 2 (Chk2) plays a central role in regulation of the cellular response to DNA damage, resulting in cell cycle arrest, DNA repair, or apoptosis depending on severity of DNA damage and the cellular context. Chk2 inhibitors are being developed as sensitizers for chemotherapeutic agents. In contrast, here we report that direct activation of Chk2 alone (without chemotherape...

متن کامل

Caffeine abolishes the mammalian G(2)/M DNA damage checkpoint by inhibiting ataxia-telangiectasia-mutated kinase activity.

Recent evidence indicates that arrest of mammalian cells at the G(2)/M checkpoint involves inactivation and translocation of Cdc25C, which is mediated by phosphorylation of Cdc25C on serine 216. Data obtained with a phospho-specific antibody against serine 216 suggest that activation of the DNA damage checkpoint is accompanied by an increase in serine 216 phosphorylated Cdc25C in the nucleus af...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012