Completeness of Normal Rational Curves

نویسنده

  • L. STORME
چکیده

The completeness of normal rational curves, considered as (q + 1)-arcs in PG(n, q), is investigated. Previous results of Storme and Thas are improved by using a result by Kovacs. This solves the problem completely for large prime numbers q and odd nonsquare prime powers q = p2h+l with p prime, p > po(h), h>\,1where po(h) is an odd prime number which depends on h.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Optimal G^2-Hermite Interpolation by Rational Cubic Bézier Curves

In this paper, we study a geometric G^2 Hermite interpolation by planar rational cubic Bézier curves. Two data points, two tangent vectors and two signed curvatures interpolated per each rational segment. We give the necessary and the sufficient intrinsic geometric conditions for two C^2 parametric curves to be connected with G2 continuity. Locally, the free parameters w...

متن کامل

Exact Parameterization of Convolution Surfaces and Rational Surfaces with Linear Normals

It is shown that curves and surfaces with a linear field of normal vectors are dual to graphs of univariate and bivariate polynomials. We discuss the geometric properties of these curves and surfaces. In particular, it is shown that the convolution with general rational curves and surfaces yields again rational curves and surfaces.

متن کامل

ec 2 00 4 Rational curves of degree 10 on a general quintic threefold ∗

We prove the “strong form” of the Clemens conjecture in degree 10. Namely, on a general quintic threefold F in P, there are only finitely many smooth rational curves of degree 10, and each curve C is embedded in F with normal bundle O(−1) ⊕ O(−1). Moreover, in degree 10, there are no singular, reduced, and irreducible rational curves, nor any reduced, reducible, and connected curves with ration...

متن کامل

Rational curves of degree 10 on a general quintic threefold

We prove the “strong form” of the Clemens conjecture in degree 10. Namely, on a general quintic threefold F in P, there are only finitely many smooth rational curves of degree 10, and each curve C is embedded in F with normal bundle O(−1) ⊕ O(−1). Moreover, in degree 10, there are no singular, reduced, and irreducible rational curves, nor any reduced, reducible, and connected curves with ration...

متن کامل

Complete characterization of the Mordell-Weil group of some families of elliptic curves

 The Mordell-Weil theorem states that the group of rational points‎ ‎on an elliptic curve over the rational numbers is a finitely‎ ‎generated abelian group‎. ‎In our previous paper, H‎. ‎Daghigh‎, ‎and S‎. ‎Didari‎, On the elliptic curves of the form $ y^2=x^3-3px$‎, ‎‎Bull‎. ‎Iranian Math‎. ‎Soc‎.‎‎ 40 (2014)‎, no‎. ‎5‎, ‎1119--1133‎.‎, ‎using Selmer groups‎, ‎we have shown that for a prime $p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003