Na+-H+ exchanger regulatory factor 1 is a PDZ scaffold for the astroglial glutamate transporter GLAST.
نویسندگان
چکیده
Glutamate is a key neurotransmitter and its levels in the synaptic cleft are tightly regulated by reuptake mechanisms that primarily involve transporters in astrocytes. This requires that the glutamate transporters be spatially constrained to effect maximum glutamate transport. GLAST (EAAT1) is the predominant astroglial transporter and contains a class I PDZ-binding consensus (ETKM) in its C-terminus. The epithelial Na(+)/H(+) exchanger regulatory factors NHERF1 and NHERF2 are PDZ proteins that contain two tandem PDZ domains and a C-terminal domain that binds members of the ERM (ezrin-radixin-moesin) family of membrane-cytoskeletal adaptors. NHERF proteins have been extensively characterized in renal epithelia and their expression in brain has recently been reported; however, their function in the brain remains unknown. The aims of the current study were to (1) determine the distribution of NHERF1/2 in the rodent brain and (2) investigate whether GLAST was a physiological ligand for NHERF1/2. Immunohistochemistry revealed that NHERF1 expression was widespread in rat brain (abundant in cerebellum, cerebral cortex, hippocampus, and thalamus) and primarily restricted to astrocytes whereas NHERF2 expression was primarily restricted to endothelial cells of blood vessels and capillaries. Importantly, NHERF1 distribution closely matched that of GLAST and confocal imaging demonstrated co-localization of the two proteins. Co-immunoprecipitation demonstrated that GLAST, NHERF1, and ezrin associate in vivo. In vitro binding assays showed that GLAST bound directly to the PDZ1 domain of NHERF1 via the C-terminal ETKM motif of GLAST. These findings implicate the GLAST-NHERF1 complex in the regulation of glutamate homeostasis in astrocytes.
منابع مشابه
GLAST stability and activity are enhanced by interaction with the PDZ scaffold NHERF-2.
The astrocytic glutamate transporter GLAST (also known as EAAT1) is a key regulator of extracellular glutamate levels in many regions of vertebrate brains. To identify novel interacting partners that might regulate the localization and function of GLAST in astrocytes, we screened the transporter's C-terminus (GLAST-CT) against a proteomic array of 96 different PDZ domains. The GLAST-CT robustly...
متن کاملGlutamate transport by retinal Muller cells in glutamate/aspartate transporter-knockout mice.
Glutamate transporters are involved in maintaining extracellular glutamate at a low level to ensure a high signal-to-noise ratio for glutamatergic neurotransmission and to protect neurons from excitotoxic damage. The mammalian retina is known to express the excitatory amino acid transporters, EAAT1-5; however, their specific role in glutamate homeostasis is poorly understood. To examine the rol...
متن کاملGroup II metabotropic glutamate receptor interactions with NHERF scaffold proteins: Implications for receptor localization in brain.
The group II metabotropic glutamate receptors mGluR2 and mGluR3 are key modulators of glutamatergic neurotransmission. In order to identify novel Group II metabotropic glutamate receptor (mGluR)-interacting partners, we screened the C-termini of mGluR2 and mGluR3 for interactions with an array of PDZ domains. These screens identified the Na+/H+ exchanger regulatory factors 1 and 2 (NHERF-1 & -2...
متن کاملBinding to Na+/H+ exchanger regulatory factor 2 (NHERF2) affects trafficking and function of the enteropathogenic Escherichia coli type III secretion system effectors Map, EspI and NleH
Enteropathogenic Escherichia coli (EPEC) strains are diarrhoeal pathogens that use a type III secretion system to translocate effector proteins into host cells in order to colonize and multiply in the human gut. Map, EspI and NleH1 are conserved EPEC effectors that possess a C-terminal class I PSD-95/Disc Large/ZO-1 (PDZ)-binding motif. Using a PDZ array screen we identified Na(+)/H(+) exchange...
متن کاملTransient upregulation of the glial glutamate transporter GLAST in response to fibroblast growth factor, insulin-like growth factor and epidermal growth factor in cultured astrocytes.
Although expression of the glial glutamate transporter GLAST is tightly regulated during development and under pathophysiological conditions, little is known about endogenous modulators of GLAST expression. Because growth factors are generally believed to regulate glial functions, we addressed their possible contribution to GLAST regulation in cultured rat astrocytes. Of the six growth factors ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Glia
دوره 55 2 شماره
صفحات -
تاریخ انتشار 2007