A Hybrid Multi-sensor Multi-target Tracking Scheme with MLE and ANFIS
نویسنده
چکیده
−The Joint Probabilistic Data Association (JPDA) solves single sensor multi-target tracking in clutter, but it cannot be used directly in multi-sensor multi-target tracking (MMT) and has high computational complexity with the number of targets and the number of returns. This paper presents a hybrid method to implement MMT by combing Maximum Likelihood Estimation (MLE) with Adaptive Neuro-Fuzzy Inference System (ANFIS). The MLE is applied to classify the same source observations at one time into the same set, then the cheap JPDA(CJPDA) approach is used to calculate the data association probability, and ANFIS is used to realize the MMT. The computer simulations indicate that this scheme achieves MMT perfectly with higher precision and easy realization. Index Terms− MMT, MLE, ANFIS, JPDA, State Fusion
منابع مشابه
Decentralized and Cooperative Multi-Sensor Multi-Target Tracking With Asynchronous Bearing Measurements
Bearings only tracking is a challenging issue with many applications in military and commercial areas. In distributed multi-sensor multi-target bearings only tracking, sensors are far from each other, but are exchanging data using telecommunication equipment. In addition to the general benefits of distributed systems, this tracking system has another important advantage: if the sensors are suff...
متن کاملTarget Tracking Based on Virtual Grid in Wireless Sensor Networks
One of the most important and typical application of wireless sensor networks (WSNs) is target tracking. Although target tracking, can provide benefits for large-scale WSNs and organize them into clusters but tracking a moving target in cluster-based WSNs suffers a boundary problem. The main goal of this paper was to introduce an efficient and novel mobility management protocol namely Target Tr...
متن کاملMultiple Target Tracking in Wireless Sensor Networks Based on Sensor Grouping and Hybrid Iterative-Heuristic Optimization
A novel hybrid method for tracking multiple indistinguishable maneuvering targets using a wireless sensor network is introduced in this paper. The problem of tracking the location of targets is formulated as a Maximum Likelihood Estimation. We propose a hybrid optimization method, which consists of an iterative and a heuristic search method, for finding the location of targets simultaneously. T...
متن کاملExpectation Maximisation for Sensor Data Fusion
The expectation maximisation algorithm (EM) was introduced by Dempster, Laird and Rubin in 1977 [DLR77]. The basic of expextation maximisation is maximum likelihood estimation (MLE). In modern sensor data fusion expectation maximisation becomes a substantial part in several applications, e.g. multi target tracking with probabilistic multi hypothesis tracking (PMHT), target extraction within pro...
متن کاملMHIDCA: Multi Level Hybrid Intrusion Detection and Continuous Authentication for MANET Security
Mobile ad-hoc networks have attracted a great deal of attentions over the past few years. Considering their applications, the security issue has a great significance in them. Security scheme utilization that includes prevention and detection has the worth of consideration. In this paper, a method is presented that includes a multi-level security scheme to identify intrusion by sensors and authe...
متن کامل