Anchoring a Leviathan: How the Nuclear Membrane Tethers the Genome

نویسندگان

  • Rafal Czapiewski
  • Michael I. Robson
  • Eric C. Schirmer
چکیده

It is well established that the nuclear envelope has many distinct direct connections to chromatin that contribute to genome organization. The functional consequences of genome organization on gene regulation are less clear. Even less understood is how interactions of lamins and nuclear envelope transmembrane proteins (NETs) with chromatin can produce anchoring tethers that can withstand the physical forces of and on the genome. Chromosomes are the largest molecules in the cell, making megadalton protein structures like the nuclear pore complexes and ribosomes seem small by comparison. Thus to withstand strong forces from chromosome dynamics an anchoring tether is likely to be much more complex than a single protein-protein or protein-DNA interaction. Here we will briefly review known NE-genome interactions that likely contribute to spatial genome organization, postulate in the context of experimental data how these anchoring tethers contribute to gene regulation, and posit several hypotheses for the physical nature of these tethers that need to be investigated experimentally. Significantly, disruption of these anchoring tethers and the subsequent consequences for gene regulation could explain how mutations in nuclear envelope proteins cause diseases ranging from muscular dystrophy to lipodystrophy to premature aging progeroid syndromes. The two favored hypotheses for nuclear envelope protein involvement in disease are (1) weakening nuclear and cellular mechanical stability, and (2) disrupting genome organization and gene regulation. Considerable experimental support has been obtained for both. The integration of both mechanical and gene expression defects in the disruption of anchoring tethers could provide a unifying hypothesis consistent with both.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Consequences of Lamin B1 and Lamin B Receptor Downregulation in Senescence

Anchoring of heterochromatin to the nuclear envelope appears to be an important process ensuring the spatial organization of the chromatin structure and genome function in eukaryotic nuclei. Proteins of the inner nuclear membrane (INM) mediating these interactions are able to recognize lamina-associated heterochromatin domains (termed LAD) and simultaneously bind either lamin A/C or lamin B1. O...

متن کامل

Lamin B Receptor: Interplay between Structure, Function and Localization

Lamin B receptor (LBR) is an integral protein of the inner nuclear membrane, containing a hydrophilic N-terminal end protruding into the nucleoplasm, eight hydrophobic segments that span the membrane and a short, nucleoplasmic C-terminal tail. Two seemingly unrelated functions have been attributed to LBR. Its N-terminal domain tethers heterochromatin to the nuclear periphery, thus contributing ...

متن کامل

Insight into Structure and Assembly of the Nuclear Pore Complex by Utilizing the Genome of a Eukaryotic Thermophile

Despite decades of research, the structure and assembly of the nuclear pore complex (NPC), which is composed of ∼30 nucleoporins (Nups), remain elusive. Here, we report the genome of the thermophilic fungus Chaetomium thermophilum (ct) and identify the complete repertoire of Nups therein. The thermophilic proteins show improved properties for structural and biochemical studies compared to their...

متن کامل

Nuclear Architecture and Epigenetics of Lineage Choice

Differentiation is an epigenetic process which is installed by changes of transcriptional programs over successive cellular divisions. A number of studies have reported the effects of biochemical modifications of chromatin (DNA and chromatin proteins) on the regulation of transcription. Although, these studies are able to explain how transcription of a given gene is regulated (toward activation...

متن کامل

A mitotic nuclear envelope tether for Gle1 also affects nuclear and nucleolar architecture

During Aspergillus nidulans mitosis peripheral nuclear pore complex (NPC) proteins (Nups) disperse from the core NPC structure. Unexpectedly, one predicted peripheral Nup, Gle1, remains at the mitotic NE via an unknown mechanism. Gle1 affinity purification identified MtgA ( M: itotic T: ether for G: le1), which tethers Gle1 to the NE during mitosis, but not during interphase when Gle1 is at NPC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016