Explicit formula for the inverse of a tridiagonal matrix by backward continued fractions
نویسنده
چکیده
In this paper, we consider a general tridiagonal matrix and give the explicit formula for the elements of its inverse. For this purpose, considering usual continued fraction, we define backward continued fraction for a real number and give some basic results on backward continued fraction. We give the relationships between the usual and backward continued fractions. Then we reobtain the LU factorization and determinant of a tridiagonal matrix. Furthermore, we give an efficient and fast computing method to obtain the elements of the inverse of a tridiagonal matrix by backward continued fractions. Comparing the earlier result and our result on the elements of the inverse of a tridiagonal matrix, it is seen that our method is more convenient, efficient and fast. 2007 Published by Elsevier Inc.
منابع مشابه
On the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملOn an Inverse Formula of a Tridiagonal Matrix
This paper provides an inverse formula freed of determinant expressions for a general tridiagonal matrix. This is viewed as an alternative version of the Usmani formula, which easily tends to blow up computationally. We discuss a number of different viewpoints regarding the proposed and Usmani’s formulas, such as the proof method and the meaning of included terms, although our formula itself ma...
متن کاملA tridiagonal matrix construction by the quotient difference recursion formula in the case of multiple eigenvalues
In this paper, we grasp an inverse eigenvalue problem which constructs a tridiagonal matrix with specified multiple eigenvalues, from the viewpoint of the quotient difference (qd) recursion formula. We also prove that the characteristic and the minimal polynomials of a constructed tridiagonal matrix are equal to each other. As an application of the qd formula, we present a procedure for getting...
متن کاملInverse Tridiagonal
In this paper, we consider matrices whose inverses are tridiagonal Z{matrices. Based on a characterization of symmetric tridiagonal matrices by Gantmacher and Krein, we show that a matrix is the inverse of a tridiagonal Z{matrix if and only if, up to a positive scaling of the rows, it is the Hadamard product of a so called weak type D matrix and a ipped weak type D matrix whose parameters satis...
متن کاملInverse Tridiagonal Z – Matrices
In this paper, we consider matrices whose inverses are tridiagonal Z–matrices. Based on a characterization of symmetric tridiagonal matrices by Gantmacher and Krein, we show that a matrix is the inverse of a tridiagonal Z–matrix if and only if, up to a positive scaling of the rows, it is the Hadamard product of a so called weak type D matrix and a flipped weak type D matrix whose parameters sat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 197 شماره
صفحات -
تاریخ انتشار 2008