Identification of an essential Francisella tularensis subsp. tularensis virulence factor.
نویسندگان
چکیده
Francisella tularensis, the highly virulent etiologic agent of tularemia, is a low-dose intracellular pathogen that is able to escape from the phagosome and replicate in the cytosol. Although there has been progress in identifying loci involved in the pathogenicity of this organism, analysis of the genome sequence has revealed few obvious virulence factors. We previously reported isolation of an F. tularensis subsp. tularensis strain Schu S4 transposon insertion mutant with a mutation in a predicted hypothetical lipoprotein, FTT1103, that was deficient in intracellular replication in HepG2 cells. In this study, a mutant with a defined nonpolar deletion in FTT1103 was created, and its phenotype, virulence, and vaccine potential were characterized. A phagosomal integrity assay and lysosome-associated membrane protein 1 colocalization revealed that DeltaFTT1103 mutant bacteria were defective in phagosomal escape. FTT1103 mutant bacteria were maximally attenuated in the mouse model; mice survived, without visible signs of illness, challenge by more than 10(10) CFU when the intranasal route was used and challenge by 10(6) CFU when the intraperitoneal, subcutaneous, or intravenous route was used. The FTT1103 mutant bacteria exhibited dissemination defects. Mice that were infected by the intranasal route had low levels of bacteria in their livers and spleens, and these bacteria were cleared by 3 days postinfection. Mutant bacteria inoculated by the subcutaneous route failed to disseminate to the lungs. BALB/c or C57BL/6 mice that were intranasally vaccinated with 10(8) CFU of FTT1103 mutant bacteria were protected against subsequent challenge with wild-type strain Schu S4. These experiments identified the FTT1103 protein as an essential virulence factor and also demonstrated the feasibility of creating defined attenuated vaccines based on a type A strain.
منابع مشابه
Glycosylation of DsbA in Francisella tularensis subsp. tularensis.
In Francisella tularensis subsp. tularensis, DsbA has been shown to be an essential virulence factor and has been observed to migrate to multiple protein spots on two-dimensional electrophoresis gels. In this work, we show that the protein is modified with a 1,156-Da glycan moiety in O-linkage. The results of mass spectrometry studies suggest that the glycan is a hexasaccharide, comprised of N-...
متن کاملThe immunologically distinct O antigens from Francisella tularensis subspecies tularensis and Francisella novicida are both virulence determinants and protective antigens.
We have determined the sequence of the gene cluster encoding the O antigen in Francisella novicida and compared it to the previously reported O-antigen cluster in Francisella tularensis subsp. tularensis. Immunization with purified lipopolysaccharide (LPS) from F. tularensis subsp. tularensis or F. novicida protected against challenge with Francisella tularensis subsp. holarctica and F. novicid...
متن کاملIron content differs between Francisella tularensis subspecies tularensis and subspecies holarctica strains and correlates to their susceptibility to H(2)O(2)-induced killing.
Francisella tularensis, the causative agent of tularemia, is one of the most infectious bacterial pathogens known and is classified as a category A select agent and a facultative intracellular bacterium. Why F. tularensis subsp. tularensis causes a more severe form of tularemia than F. tularensis subsp. holarctica does is not known. In this study, we have identified prominent phenotypic differe...
متن کاملCharacterization and classification of strains of Francisella tularensis isolated in the central Asian focus of the Soviet Union and in Japan.
The two subspecies of Francisella tularensis, F. tularensis subsp. tularensis (type A) and F. tularensis subsp. palaearctica (type B), differ from each other in biochemistry and virulence. Strains of F. tularensis subsp. tularensis are believed to be confined to North America, whereas strains of F. tularensis subsp. palaearctica occur in Europe, in Asia, and in North America. Moreover, the exis...
متن کاملIglE is an outer membrane-associated lipoprotein essential for intracellular survival and murine virulence of type A Francisella tularensis.
IglE is a small, hypothetical protein encoded by the duplicated Francisella pathogenicity island (FPI). Inactivation of both copies of iglE rendered Francisella tularensis subsp. tularensis Schu S4 avirulent and incapable of intracellular replication, owing to an inability to escape the phagosome. This defect was fully reversed following single-copy expression of iglE in trans from attTn7 under...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 77 1 شماره
صفحات -
تاریخ انتشار 2009