Continuous Speech Phoneme Recognition Using Dynamic Artificial Neural Networks
نویسندگان
چکیده
Phoneme classification and recognition is the first step to large vocabulary continuous speech recognition. This step represents the acoustic modeling part of such a system. In hybrid speech recognition systems phoneme recognition is made by artificial neural networks (ANN’s). The main objective of this paper is the investigation of dynamic ANN’s, namely the Time-Delay Neural Networks (TDNN) and Recurrent Neural Networks (RNN) that are the most suitable for recognition of time sequences. There are presented two types of TDDN’s: Focused Time-Delay Neural Networks (FTDNN) and Distributed Time-Delay Neural Networks (DTDNN) respectively and a Layer Recurrent Neural Network (LRNN). The development of a phoneme recognizer application using dynamic ANN’s for OASIS Numbers databases is also described. There are also presented the phoneme classification experiments and the results for the ANN’s. Finally some conclusions are drawn based on the experimental results.
منابع مشابه
بهبود عملکرد سیستم بازشناسی گفتار پیوسته بوسیله ویژگیهای استخراج شده از مانیفولدهای گفتاری در فضای بازسازی شده فاز
The design for new feature extraction methods out of the speech signal and combination of their obtained information is one of the most effective approaches to improve the performance of automatic speech recognition (ASR) system. Recent researches have been shown that the speech signal contains nonlinear and chaotic properties, but the effects of these properties are not used in the continuous ...
متن کاملImproving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...
متن کاملPredictive neural networks applied to phoneme recognition
In this paper a phoneme recognition system based on predictive neural networks is proposed. Neural networks are used to predict observation vectors of speech frames. The obtained prediction error is used for phoneme recognition as 1) distortion measure on the frame level and 2) as feature, which is statistically modeled by the Rayleigh distribution. Continuous speech phoneme recognition experim...
متن کاملDeep-hidden Conditional Neural Fields for Continuous Phoneme Speech Recognition
We have proposed Hidden Conditional Neural Fields (HCNF) for automatic speech recognition and shown the effectiveness by continuous phoneme recognition experiments on the TIMIT and the Japanese ASJ+JNAS corpora. In this paper, we propose to use an observation function with a deep structure in HCNF. The proposed deep observation function enables to use the deep neural networks in HCNF, which hav...
متن کاملNew variant of the Self Organizing Map in Pulsed Neural Networks to Improve Phoneme Recognition in Continuous Speech
Speech recognition has gradually improved over the years, phoneme recognition in particular. Phoneme recognition plays very important role in speech processing. Phoneme strings are basic representation for automatic language recognition and it is proved that language recognition results are highly correlated with phoneme recognition results. Nowadays, many recognizers are based on Artificial ne...
متن کامل