A physically-based model for retrieving foliar biochemistry and leaf orientation using close-range imaging spectroscopy

نویسندگان

  • Sylvain Jay
  • Ryad Bendoula
  • Xavier Hadoux
  • Jean-Baptiste Féret
  • Nathalie Gorretta
چکیده

Article history: Received 12 October 2015 Received in revised form 21 January 2016 Accepted 12 February 2016 Available online 1 March 2016 Radiative transfer models have long been used to characterize the foliar content at the leaf and canopy levels. However, they still do not apply well to close-range imaging spectroscopy, especially because directional effects are usually not taken into account. For this purpose, we introduce a physical approach to describe and simulate the variation in leaf reflectance observed at this scale. Two parameters are thus introduced to represent (1) specular reflection at the leaf surface and (2) local leaf orientation. The model, called COSINE (ClOse-range Spectral ImagiNg of lEaves), can be coupled with a directional–hemispherical reflectance model of leaf optical properties to relate themeasured reflectance to the foliar content. In this study,we show that,when combiningCOSINEwith the PROSPECT model, the overall PROCOSINE model allows for a robust submillimeter retrieval of foliar content based on numerical inversion and pseudo-bidirectional reflectance factor hyperspectral measurements. The relevance of the added parameters is first shown through a sensitivity analysis performed in the visible and near-infrared (VNIR) and shortwave infrared (SWIR) ranges. PROCOSINE is then validated based on VNIR and SWIR hyperspectral images of various leaf species exhibiting different surface properties. Introducing these two parameters within the inversion allows us to obtain accurate maps of PROSPECT parameters, e.g., the chlorophyll content in the VNIR range, and the equivalent water thickness and leaf mass per area in the SWIR range. Through the estimation of light incident angle, the PROCOSINE inversion also provides information on leaf orientation, which is a critical parameter in vegetation remote sensing. © 2016 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disentangling the contribution of biological and physical properties of leaves and canopies in imaging spectroscopy data.

We agree with Knyazikhin et al. (1), who reported in a recent issue of PNAS that relationships between foliar nitrogen (%N) and near-infrared (NIR) canopy albedo appeared to be indirect and explained largely by differences in leaf and canopy structure, primarily between conifer and broadleaf species. We disagree, however, with the conclusion that %N–NIR correlations are necessarily spurious. On...

متن کامل

Disentangling the contribution of biological and physical properties of leaves and canopies in imaging spectroscopy data

We agree with Knyazikhin et al. (1), who reported in a recent issue of PNAS that relationships between foliar nitrogen (%N) and near-infrared (NIR) canopy albedo appeared to be indirect and explained largely by differences in leaf and canopy structure, primarily between conifer and broadleaf species. We disagree, however, with the conclusion that %N–NIR correlations are necessarily spurious. On...

متن کامل

Modeling Time Resolved Light Propagation Inside a Realistic Human Head Model

Background: Near infrared spectroscopy imaging is one of the new techniques used for investigating structural and functionality of different body tissues. This is done by injecting light into the medium and measuring the photon intensity at the surface of the tissue.Method: In this paper the different medical applications, various imaging and simulation techniques of NIRS imaging is described. ...

متن کامل

Leaf angle responds to nitrogen supply in eucalypt seedlings. Is it a photoprotective mechanism?

We examined the adjustment of leaf angle (L theta) and foliar chlorophyll and xanthophyll chemistry in Eucalyptus nitens (Deane and Maiden) Maiden seedlings maintained in various nitrogen (N)-supply treatments over a 6-month period. Adjustment of L theta toward the vertical was greatest under conditions of foliar N deficiency and became incrementally more horizontal with increasing foliar N con...

متن کامل

An Approach for Foliar Trait Retrieval from Airborne Imaging Spectroscopy of Tropical Forests

Spatial information on forest functional composition is needed to inform management and conservation efforts, yet this information is lacking, particularly in tropical regions. Canopy foliar traits underpin the functional biodiversity of forests, and have been shown to be remotely measurable using airborne 350–2510 nm imaging spectrometers. We used newly acquired imaging spectroscopy data const...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016