Mechanism of action of a polypeptide neurotoxin from the coral Goniopora on sodium channels in mouse neuroblastoma cells.
نویسندگان
چکیده
Goniopora toxin (GPT), a polypeptide toxin of 9700 Da isolated from coral, markedly slows inactivation of sodium currents recorded under voltage clamp in mouse neuroblastoma cells. The voltage dependence of sodium channel activation is shifted to more negative membrane potentials by 9.8 +/- 2.1 mV, and the voltage dependence of channel inactivation is shifted to more positive membrane potential by 6.0 +/- 2.5 mV. These actions of GPT are voltage dependent with an e-fold increase in K0.5 for toxin action for each 48.3-mV depolarization between -80 and +40 mV. GPT requires Na+ or another alkali metal cation in the extracellular medium for its effect on sodium channels. The relative effectiveness of the different cations tested is Na+ greater than K+ greater than Rb+ greater than Li+ greater than Cs+ much greater than choline+. Like other polypeptide neurotoxins that slow inactivation of sodium channels, GPT enhances persistent activation of sodium channels by veratridine. However, GPT does not block the binding of 125I-labeled Leiurus scorpion toxin to neurotoxin receptor site 3 on sodium channels at concentrations which effectively slow channel inactivation. Therefore, our results define a new site on the sodium channel at which specific effects on inactivation can occur.
منابع مشابه
Gating of Na Channels Inactivation Modifiers Discriminate among Models TOHRU GONOI
Macroscopic Na currents were recorded from N 18 neuroblastoma cells by the whole-cell voltage-clamp technique . Inactivation of the Na currents was removed by intracellular application of proteolytic enzymes, trypsin, a-chymotrypsin, papain, or ficin, or bath application of N-bromoacetamide . Unlike what has been reported in squid giant axons and frog skeletal muscle fibers, these treatments of...
متن کاملGating of Na channels. Inactivation modifiers discriminate among models
Macroscopic Na currents were recorded from N18 neuroblastoma cells by the whole-cell voltage-clamp technique. Inactivation of the Na currents was removed by intracellular application of proteolytic enzymes, trypsin, alpha-chymotrypsin, papain, or ficin, or bath application of N-bromoacetamide. Unlike what has been reported in squid giant axons and frog skeletal muscle fibers, these treatments o...
متن کاملEffects of Goniopora toxin on crayfish giant axons.
The effects of Goniopora toxin (GPT), isolated from the coral Goniopora species, on the crayfish giant axon have been studied by means of microelectrode and sucrose-gap voltage clamp techniques. When applied externally at a concentration of 0.1 microM or higher, the falling phase of the action potential was prolonged markedly. At concentrations over 0.3 microM, GPT gradually depolarized the mem...
متن کاملIsolation of a Nav channel blocking polypeptide from Cyanea capillata medusae - a neurotoxin contained in fishing tentacle isorhizas.
Jellyfish are efficient predators which prey on crabs, fish larvae, and small fish. Their venoms consist of various toxins including neurotoxins that paralyse prey organisms immediately. One possible mode of action of neurotoxins is the blockage of voltage-gated sodium (Na(v)) channels. A novel polypeptide with Na(v) channel blocking activity was isolated from the northern Scyphozoa Cyanea capi...
متن کاملEffect of Sodium Valproate on Ouabain-Induced Arrhythmia in Isolated Guinea-Pig Atria
Sodium valproate (SV), an antiepileptic drug has several mechanism of action. It inhibits voltage sensitive Na+ channels and reduces intracellular Na accumulation. These actions are similar to that of both phenytoin and carbamazepine. We have investigated the direct cardiac action of SV and its effects on ouabain-induced arrhythmia in isolated guinea-pig atria. The guinea-pig atrium was dissect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 29 4 شماره
صفحات -
تاریخ انتشار 1986